Math, asked by BrainIyMSDhoni, 9 months ago

Question No. 19

Find the area of the triangle whose coordinates of vertices are A(6,3), B(-3,5) and (4,-2).

Best answer will be marked brainliest

No spam please

Answers

Answered by suveda34
11

Answer:

\huge{\fbox{\fbox{\pink{HELLO}}}}

I have attached above the solution

hope it helps

 <marquee \: behaviour = alternate><font \: color =blue> give thanks & follow me pls

Attachments:
Answered by Anonymous
23

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Coordinates \: of \: triangle \: ABC \: are : \: A(6, 3), \\ \\ \sf \: B(-3,5) \: and \: C(4,-2).

\large{\green{\bold{\underline{To \: Calculate:}}}}

 \sf \: Area \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}}

\sf \: Area  \: of \:  triangle =  \frac{1}{2}  \times x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2})

\large{\pink{\bold{\underline{Step \: by \: step \: Solution:}}}}

 \sf \: Let \: us \: consider \: the \: respective \: coordinates \: as : \\  \\ A(6, 3) \rightarrow \: \sf \: (x_{1}, y_{1}) \\  \\ B(-3,5) \rightarrow \: \sf \: (x_{2}, y_{2}) \\  \\ C(4,-2) \rightarrow \: \sf \: (x_{3}, y_{3})

\large{\red{\bold{\underline{Calculation:}}}}

\sf \rightarrow \: Area \:  of  \: triangle =  \frac{1}{2}  \times 6(5 - ( - 2))  - 3( - 2 - 3) + 4(3 - 5) \\  \\ \rightarrow \sf \: Area  \: of \:  triangle =  \frac{1}{2} \times( 6 \times 7)    +(3 \times 5)  - (4 \times 2) \\ \\ \rightarrow \sf \: Area  \: of  \: triangle =  \frac{1}{2}\times( 42 + 15 - 8) \\ \\ \rightarrow \sf \: Area  \: of \:  triangle =  \frac{1}{2}  \times 49 \\ \\ \rightarrow \sf \: Area \:  of  \: triangle = 24.5

\large{\orange{\bold{\underline{Therefore:}}}}

 \underline{ \sf \: The \: area \: of \: triangle \: is \: 24.5 \: Square \: units.}

Similar questions