Math, asked by abhishekrewatkar955, 1 month ago

Question No. 2
• Fourier cosine transform of f(x)=1
, 0<x< 1 is​

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The Fourier cosine transform of

f(x) = 1 where 0 < x < 1

EVALUATION

Here the given function is

f(x) = 1 where 0 < x < 1

Hence the required cosine transform of f(x)

 \sf{F_c[f(x)]}

\displaystyle =  \int\limits_{0}^{\infty}  \sf{ f(x)  \cos sx} \:  \, dx

\displaystyle =  \int\limits_{0}^{1}  \sf{ 1.  \cos sx} \:  \, dx

\displaystyle =  \int\limits_{0}^{1}  \sf{   \cos sx} \:  \, dx

 =  \displaystyle \sf{\left. \frac{ \sin sx}{s} \right|_0^1}

 =  \displaystyle \sf{ \frac{ \sin s}{s} - \frac{ \sin 0}{s}\: }

 =  \displaystyle \sf{ \frac{ \sin s}{s}}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Laplace transform (D²-3D+2)y=4 given y(0)=2 and y’(0)=3

https://brainly.in/question/32934012

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions