Question no. 28plzzzzz....
Attachments:
Anonymous:
..
Answers
Answered by
2
Answer:
Step-by-step explanation:
Let∆PQR BE A RIGHT ANGLE AT 'Q' SUCH THAT QR=x andA area of∆ PQR
DRAW QN PERPENDICULAR to PR
NOW,AREA OF ∆PQR
A=I/2*QR*PQ
A=1/2*x*PQ
PQ=2A/x......(1)
Now in ∆ pqr and pnq
Angle pnq=angle pqr
And,angle p is common
So, by AAcriteria ∆pqr~∆pnq
PQ/PR=NQ/QR.....(2)
APPLYING PYTHAGORAS THEROM IN ∆PQR
PQ^2+QR^2=PR^2
4A^2/x^2+x^2=PR^2
PR=√4A^2+x^4/√b^2
PR=√4A^2+x^4/x
From eq1 n 2 we get,
2A/x*PR=NQ/x
NQ=2A/PR
PUTTING VALUE OF PR
WE GET NQ=2Ab/√4A^2+b^4
Hence proved
HOPE U WILL GET
Similar questions