Math, asked by saryupareek2727, 7 hours ago

Question No. 4
The greatest common divisor of 33333
+1 and
33334
+lis:
O O
1
2
ОО
3
333
个​

Answers

Answered by gdsahluwalia
0

Answer:

333334

Step-by-step explanation:

NO NEED

Answered by siddhuswarnakar8
0

Answer:

Since a3+1=(a+1)(a2−a+1)a3+1=(a+1)(a2−a+1), gcd(a+1,a3+1)=a+1gcd(a+1,a3+1)=a+1.

Now with a=33333a=33333, a3=(33333)3=33333⋅3=33334a3=(33333)3=33333⋅3=33334. Hence the gcd equals 33333+133333+1. ■

Similar questions