Question No. 4
The greatest common divisor of 33333
+1 and
33334
+lis:
O O
1
2
ОО
3
333
个
Answers
Answered by
0
Answer:
333334
Step-by-step explanation:
NO NEED
Answered by
0
Answer:
Since a3+1=(a+1)(a2−a+1)a3+1=(a+1)(a2−a+1), gcd(a+1,a3+1)=a+1gcd(a+1,a3+1)=a+1.
Now with a=33333a=33333, a3=(33333)3=33333⋅3=33334a3=(33333)3=33333⋅3=33334. Hence the gcd equals 33333+133333+1. ■
Similar questions