Math, asked by Arpitdhruv2005, 1 year ago

Question no. 4th part

Attachments:

Answers

Answered by tahseen619
0

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  \\

 \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{  3})(2 -  \sqrt{3} ) }  \\  \frac{2 -  \sqrt{3} }{4 - 3}  \\ 2 -  \sqrt{3}

 \frac{2}{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  \frac{2 (\sqrt{5}  +  \sqrt{3} )}{( \sqrt{5} -  \sqrt{3}  )  ( \sqrt{5}  +  \sqrt{3}  )}  \\  \frac{2( \sqrt{5}  +   \sqrt{3})  }{5 - 3}  \\  \frac{2( \sqrt{5}  +  \sqrt{3} )}{2}  \\  \sqrt{5}  +  \sqrt{3}

\frac{1}{2 -  \sqrt{5} }  \times  \frac{2 +  \sqrt{5} }{2 +  \sqrt{5} }  \\  \frac{2 +  \sqrt{5} }{(2 -  \sqrt{5} )(2 +  \sqrt{5} )}  \\  \frac{2 +  \sqrt{5} }{4 - 5 }  \\  - 2 -  \sqrt{5}

 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5} -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }  \\ 2 -  \sqrt{3}  +  \sqrt{5}   +  \sqrt{3}  - 2 -  \sqrt{5}  \\ 0


Arpitdhruv2005: Thanks for the answer
Similar questions