question no. 5 and 6
Answers
Question:
5. In fig 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR.
Prove that ∠ROS = ¹/₂ (∠QOS - ∠POS)
- SOLUTION:
Given:
OR ⊥ PQ [OR is perpendicular to PQ]
∵ ∠QOR = 90°
Now,
From the figure, we get that
∠POR and ∠QOR are linear pair(sum = 180°)
⇒ ∠POR + ∠QOR = 180°
⇒ ∠POR + 90° = 180°
[∵ from given ∠QOR = 90° ]
⇒ ∠POR = 180° - 90°
⇒ ∠POR = 90°
By looking at the figure, we also get that,
∠POR = ∠POS + ∠ROS
⇒ 90° = ∠POS + ∠ROS
⇒ 90° - ∠POS = ∠ROS -------(i)
→ Also, ∠QOS and ∠POS are linear pairs.
⇒ ∠QOS + ∠POS = 180°
[Multiplying 1/2 to both the sides]
------(ii)
Now,
Will substitute the eq.(ii) in (i), we get,
[Taking LCM 2 in RHS]
Hence proved.
- - - - - - - - - - -
Question
6. It is given that ∠XYZ = 64° and XY are produced to point P. Draw the figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
- SOLUTION:
[see image 2]
Given -
∠XYZ = 64°
Here,
∠XYZ and ∠ZYP are linear pair (Sum = 180°)
⇒ ∠ XYZ + ∠ZYP = 180°
⇒ 64° + ∠ZYP = 180°
⇒ ∠ZYP = 180° - 64°
⇒ ∠ZYP = 116°
Also,
Ray YQ bisect ∠ZYP (Given)
∠QYZ = ∠QYP
Also,
∠ZYP + 64 = 180
⇒ ∠QYZ + ∠QYP + 64 = 180
⇒ ∠QYZ + ∠QYZ = 180 - 64
⇒ 2∠QYZ = 116
⇒ ∠QYZ = 116 ÷ 2
⇒ ∠QYP = 58°
Now,
∠XYQ = ∠QYZ + ∠XYZ
∠XYQ = 58 + 64
∠XYQ = 112°
So,
Reflex ∠QYP = 360 - ∠QYP
= 360 - 58
= 302°
Hence,
∠XYZ = 112°
And
Reflex ∠QYP = 302°
.
.
.
Answer will be (302degrees)
__________________________
It is given that say YQ bisects ∠ZYP
So let, ∠PYQ=∠QYZ=x
∠PYZ=2x
Since QY stands on say PX
∠PYZ+∠ZYX=180
⇒2x+64 =180
[∵∠ZYX=∠XYZ=64 ]
⇒x=(180−64)/2
x=58
∴∠XYQ=∠XYZ+∠ZYQ=64 +58 =122
and reflex
∠QYP=360 −∠QYP=360 −x
∠QYP=360 −58 =302 degree
____________________________