question no 5 solve and send me fast
Attachments:
Answers
Answered by
0
x = [a^(2n)-1]\[a^(2n+1],
x.a^(2n)+x=a^(2n)-1,
then
a^(2n)[x-1]=-1-x,
then
a^(2n)=(-1-x)/(x-1),
then
a^(2n)=(1+x)/(1-x),
taking log both sides, we have
2n.loga = log[(1+x)/(1-x)],
then
2n = log[(1+x)/(1-x)] ÷ loga,
therefore
n = 1/2 [log{(1+x)/(1-x)} ÷ loga]
x.a^(2n)+x=a^(2n)-1,
then
a^(2n)[x-1]=-1-x,
then
a^(2n)=(-1-x)/(x-1),
then
a^(2n)=(1+x)/(1-x),
taking log both sides, we have
2n.loga = log[(1+x)/(1-x)],
then
2n = log[(1+x)/(1-x)] ÷ loga,
therefore
n = 1/2 [log{(1+x)/(1-x)} ÷ loga]
Similar questions