Question no I've prove the identity
Attachments:
Swarup1998:
which one?
Answers
Answered by
33
Answer :
Let us know about a few trigonometric identity formulae which should be well-known.
sin²θ + cos²θ = 1 ...(i)
sec²θ - tan²θ = 1 ...(ii)
cosec²θ - cot²θ = 1 ...(iii)
Algebraic identity -
a² - b² = (a + b) (a - b) ...(iv)
Now, L.H.S.
= cot²θ/(cosecθ + 1)
= (cosec²θ - 1)/(cosecθ + 1), using (iii)
= [(cosecθ)² - 1²]/(cosecθ + 1)
= [(cosecθ + 1) (cosecθ - 1)]/(cosecθ + 1), using (iv)
= cosecθ - 1
= R.H.S. [Proved]
Hope it helps!
Let us know about a few trigonometric identity formulae which should be well-known.
sin²θ + cos²θ = 1 ...(i)
sec²θ - tan²θ = 1 ...(ii)
cosec²θ - cot²θ = 1 ...(iii)
Algebraic identity -
a² - b² = (a + b) (a - b) ...(iv)
Now, L.H.S.
= cot²θ/(cosecθ + 1)
= (cosec²θ - 1)/(cosecθ + 1), using (iii)
= [(cosecθ)² - 1²]/(cosecθ + 1)
= [(cosecθ + 1) (cosecθ - 1)]/(cosecθ + 1), using (iv)
= cosecθ - 1
= R.H.S. [Proved]
Hope it helps!
Answered by
14
Here is your solution :
( iv )
R.H.S = cosec ∅ - 1
L.H.S = cot²∅ / ( cosec∅ + 1 )
_________________________
We know that,
=> cot∅ = cos∅ / sin∅
Squaring both sides,
=> cot²∅ = cos²∅ / sin²∅
And,
=> cosec∅ = ( 1 / sin∅ )
_________________________
= ( cos²∅ / sin²∅ ) / [ ( 1 / sin∅ ) + 1]
= ( cos²∅ / sin²∅ ) / [ ( 1 + sin∅ ) / sin∅ ]
= ( cos²∅ / sin²∅ ) × [ sin∅ / ( 1 + sin∅ ) ]
= cos²∅ / [ sin∅ ( 1 + sin∅ ) ]
= cos²∅ / [ sin∅ ( 1 + sin∅ ) ]
We know that,
=> sin²∅ + cos²∅ = 1
•°• cos²∅ = 1 - sin²∅
= ( 1 - sin²∅ ) / [ sin∅ ( 1 + sin∅) ]
= [ 1² - ( sin∅ )²] / [ sin∅ ( 1 + sin∅ ) ]
Using identity,
=> ( a² - b² ) = ( a + b ) ( a - b )
= [ ( 1 + sin∅ ) ( 1 - sin∅ ) ] / [ sin∅( 1 + sin∅ ) ]
= ( 1 - sin∅ ) / sin∅
= ( 1 / sin∅ ) - ( sin∅ / sin∅ )
We know that,
=> sin∅ = 1 / cosec∅
•°• cosec∅ = 1 / sin∅
= cosec∅ - 1 ( R.H.S )
Proved
Hope it helps !!
( iv )
R.H.S = cosec ∅ - 1
L.H.S = cot²∅ / ( cosec∅ + 1 )
_________________________
We know that,
=> cot∅ = cos∅ / sin∅
Squaring both sides,
=> cot²∅ = cos²∅ / sin²∅
And,
=> cosec∅ = ( 1 / sin∅ )
_________________________
= ( cos²∅ / sin²∅ ) / [ ( 1 / sin∅ ) + 1]
= ( cos²∅ / sin²∅ ) / [ ( 1 + sin∅ ) / sin∅ ]
= ( cos²∅ / sin²∅ ) × [ sin∅ / ( 1 + sin∅ ) ]
= cos²∅ / [ sin∅ ( 1 + sin∅ ) ]
= cos²∅ / [ sin∅ ( 1 + sin∅ ) ]
We know that,
=> sin²∅ + cos²∅ = 1
•°• cos²∅ = 1 - sin²∅
= ( 1 - sin²∅ ) / [ sin∅ ( 1 + sin∅) ]
= [ 1² - ( sin∅ )²] / [ sin∅ ( 1 + sin∅ ) ]
Using identity,
=> ( a² - b² ) = ( a + b ) ( a - b )
= [ ( 1 + sin∅ ) ( 1 - sin∅ ) ] / [ sin∅( 1 + sin∅ ) ]
= ( 1 - sin∅ ) / sin∅
= ( 1 / sin∅ ) - ( sin∅ / sin∅ )
We know that,
=> sin∅ = 1 / cosec∅
•°• cosec∅ = 1 / sin∅
= cosec∅ - 1 ( R.H.S )
Proved
Hope it helps !!
Similar questions