Math, asked by rupeshofficial484, 10 months ago

question no ten Plzz with solutions​

Attachments:

Answers

Answered by Brâiñlynêha
51

Given :-

\sf\ \bigg(x+\dfrac{1}{x}\bigg)^2 =4+\dfrac{3}{2}\bigg(x-\dfrac{1}{x}\bigg)

To Find out :-

  • We have to find the value of 'x'

\underline{\sf{\dag\ \ Formula \ used :-\ \ }}

\bullet\sf \ \ (a+b)^2= (a-b)^2+4ab\\ \\ \bullet\sf (a-b)^2= a^2+b^2-2ab

Solution :-

:\implies\sf Suppose \  \bigg(x-\dfrac{1}{x}\bigg)= a \\ \\ :\implies\sf\ then \ \bigg(x+\dfrac{1}{x}\bigg)^2= \bigg(x-\dfrac{1}{x}\bigg)^2+4\times \cancel{x}\times \dfrac{1}{\cancel{x}}\\ \\ :\implies\sf \bigg(x+\dfrac{1}{x}\bigg)^2=a^2+4 ---- eq.\ (i)

\underline{\boldsymbol{\ According\ to\ Question:}}

\dashrightarrow\sf \bigg(x+\dfrac{1}{x}\bigg)^2 = 4+\dfrac{3}{2}\bigg(x-\dfrac{1}{x}\bigg)\\ \\ \\ \dashrightarrow\sf a^2+4=4+\dfrac{3}{2}a\ \ \ \ \ \therefore\Big[ From \ eq.\ (i) \Big]\\ \\ \\ \dashrightarrow\sf a^2-\dfrac{3a}{2}= 4-4 \\ \\ \\ \dashrightarrow\sf a\bigg(a-\dfrac{3}{2}\bigg)= 0 \ \ \ \ \therefore \bigg[ taking \ " a"  \ as \ common\bigg] \\ \\ \\ \dashrightarrow\sf a=0 \ \ \  ;\ \ a-\dfrac{3}{2}=0\\ \\ \\ \dashrightarrow{\purple{\sf a=0 \ \ ;\ \ a=\dfrac{3}{2}}}

\underline{\bigstar{\sf The \ value \ of \ a \ is \ either \ 0\ \ or\ \ 3/2}}

Now we have to find the value of x

☯ Now substitute the value of a=0

:\implies\sf \bigg(x-\dfrac{1}{x}\bigg)^2= 0\\ \\ \\ :\implies\sf \dfrac{(x^2-1)}{x}=0\\ \\ \\  :\implies\sf  x^2-1=0\\ \\ \\ :\implies\sf x^2= 1 \\ \\ \\ :\implies {\red{\sf\ x= \pm\ 1 }}\ \ \ \ \bigg[ \pm\ 1= 1 , \ and  \ (-1)\bigg]

☯ Then substitute the value of a=3/2

:\implies\sf \bigg(x-\dfrac{1}{x}\bigg)= \dfrac{3}{2}\\ \\ \\ :\implies\sf \dfrac{x^2-1}{x}= \dfrac{3}{2}\\ \\ \\ :\implies\sf 2(x^2-1)=3x\ \ \ \ \therefore\bigg[\ By \ Cross \ multiplication \bigg]\\ \\ \\ :\implies\sf 2x^2-3x-2=0\\ \\ \\ :\implies\sf\ 2x^2-(4-1)x-2=0\ \ \ \ \therefore \bigg( splitting\ middle \ term \bigg)\\ \\ \\ :\implies\sf 2x^2-4x+x-2=0\\ \\ \\. :\implies\sf 2x(x-2)+1(x-2)=0\\ \\ \\ :\implies\sf (x-2)(2x+1)=0\\ \\ \\ :\implies{\red{\sf x=2 \ \ ; \ \ x= \dfrac{-1}{2}}}

\therefore{\underline{\sf Hence , \ the \ value \ of \ x\ =\  1  , \ (-1)\  , \ 2,\ and \ (-1/2)}}

Answered by rohit301486
36

</p><p>\green{\underline \bold{Given :}}</p><p></p><p>

\bigg(x+\dfrac{1}{x}\bigg)^2 =4+\dfrac{3}{2}\bigg(x-\dfrac{1}{x}\bigg)

 \red{\underline \bold{To \: Find:}}</p><p></p><p>

  • we will find the value of x

\blue{\boxed{ \bold{Some \: related \: formula \: will \: be \: used}}}

\bullet\sf \ \ (a+b)^2= (a-b)^2+4ab

\bullet\sf (a-b)^2= a^2+b^2-2ab

</p><p>\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}</p><p></p><p>

\implies\sf Suppose \ \bigg(x-\dfrac{1}{x}\bigg)= a

\sf\implies\ then \ \bigg(x+\dfrac{1}{x}\bigg)^2= \bigg(x-\dfrac{1}{x}\bigg)^2+4\times \cancel{x}\times \dfrac{1}{\cancel{x}}

\sf \implies\bigg(x+\dfrac{1}{x}\bigg)^2=a^2+4 ---- eq.\ (i)

{\boldsymbol{\ According\ to\ Question:}}

\dashrightarrow\sf \bigg(x+\dfrac{1}{x}\bigg)^2 = 4+\dfrac{3}{2}\bigg(x-\dfrac{1}{x}\bigg)

\dashrightarrow\sf a^2+4=4+\dfrac{3}{2}a

therefore\Big[ From \ eq.\ (i) \Big]

\dashrightarrow\sf a^2-\dfrac{3a}{2}= 4-4

\dashrightarrow\sf a\bigg(a-\dfrac{3}{2}\bigg)= 0

\therefore \bigg[ taking \ " a" \ as \ common\bigg]

\dashrightarrow\sf a=0

a-\dfrac{3}{2}=0

 \dashrightarrow{\purple{\sf a=0 \ \ ;\ \ a=\dfrac{3}{2}}}

\underline{{\sf The \ value \ of \ a \ is \ either \ 0\ \ or\ \ 3/2}}

  • Now we will find the value of x

  • Substitute the value of a = 0

\implies\sf \bigg(x-\dfrac{1}{x}\bigg)^2= 0

\implies\sf \dfrac{(x^2-1)}{x}=0

\implies\sf x^2-1=0

\implies\sf x^2= 1

\implies {\red{\sf\ x= \pm\ 1 }}

\bigg[ \pm\ 1= 1 , \ and \ (-1)\bigg]

\tt: \implies Now \:  substitute \:  the \:  value  \: of \:  a \:  =  \frac{3}{2}

\implies\sf \bigg(x-\dfrac{1}{x}\bigg)= \dfrac{3}{2}

\implies\sf \dfrac{x^2-1}{x}= \dfrac{3}{2}

\implies\sf 2(x^2-1)=3x

\therefore\bigg[\ By \ Cross \ multiplication \bigg]

\implies\sf 2x^2-3x-2=0

\implies\sf\ 2x^2-(4-1)x-2=0

\therefore \bigg( splitting\ middle \ term \bigg)

\implies\sf 2x^2-4x+x-2=0

\implies\sf 2x(x-2)+1(x-2)=0

\implies\sf (x-2)(2x+1)=0

\implies{\red{\sf x=2 \ \ ; \ \ x= \dfrac{-1}{2}}}

{\underline {\sf Hence , \ the \ value \ of \ x\ =\ 1 , \ (-1)\ , \ 2,\ and \ (-1/2)}}

Similar questions