Question number 12.
Attachments:
Answers
Answered by
4
Hii its tom85
{1/(sec^2x - cos^2x)}=cos^2x/(1-cos^4x)_____(1
{1/(cosec^2x - sin^2x)}=sin^2x/(1-sin^4x)___(2
now
LHS
putting the value from above two equation we get
{(cos^2x/(1-cos^4x )+sin^2x/(1-sin^4x)}sin^2xcos^2x
{cos^2x/(sin^2x(1+cos^2x)+sin^2x/cos^2x(1+sin^2x)}sin^2xcos^2x
{cot^2x/(1+sin^2x)+tan^2x/1+cos^2x}sin^2xcos^2x
cos^4x/1+sin^2x + sin^4x/1+cos^2x
(cos^4x+cos^6x+sin^4x+sin^6x)/
(2+sin^2xcos^2x)
(1+2sin^2xcos^2x+1-3sin^2xcos^2x)/(2+sin^2xcos^2x)
(2-sin^2xcos^2x)/(2+sin^2xcos^2x)
RHS
__________/\__________☺️
hope it helps you dude
Similar questions
Hindi,
6 months ago
Math,
6 months ago
Science,
1 year ago
Computer Science,
1 year ago
Social Sciences,
1 year ago