Math, asked by sprabhashakar, 18 days ago

Question number-13. Prove. ​

Attachments:

Answers

Answered by Anonymous
5

Step-by-step explanation:

The given limit will attain 0/0 indeterminate form by direct substitution.

Inorder to solve this problem, firstly we need to get rid of the cube root in numerator. We are aware about the following algebraic identity:

  • \boxed{ \sf A^3 - B^3 = (A-B)(A^2+B^2+AB) }

Therefore, in the given limit, multiply both numerator and denominator by  \sf (A^2+B^2+AB) .

‎ ‎ ‎

Here,

  •  \sf A = \sqrt[3]{(1+x)}
  • \sf B = \sqrt[3]{(1-x)}.

‎ ‎ ‎

\sf \implies  \lim \limits_{x \to 0}\dfrac{(\sqrt[3]{1+x} - \sqrt[3]{1-x})[(\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})]}{x[(\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})]}

Now use the identity in numerator:

\sf \implies  \lim \limits_{x \to 0}\dfrac{(\sqrt[3]{1+x})^{3}  - (\sqrt[3]{1-x})^3}{x[(\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})]}

\sf \implies  \lim \limits_{x \to 0}\dfrac{1 + x  - 1 + x}{x[(\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})]}

\sf \implies  \lim \limits_{x \to 0}\dfrac{2  \not x}{ \not x[(\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})]}

\sf \implies  \lim \limits_{x \to 0}\dfrac{2 }{ (\sqrt[3]{1+x})^2 +  (\sqrt[3]{1-x})^2 +  ( \sqrt[3]{1+x})( \sqrt[3]{1-x})}

Now substitute the limits

\sf \implies  \dfrac{2 }{ (\sqrt[3]{1+0})^2 +  (\sqrt[3]{1-0})^2 +  ( \sqrt[3]{1+0})( \sqrt[3]{1-0})}

\sf \implies  \dfrac{2 }{1 +  1 +  ( 1)(1)}

\sf \implies  \dfrac{2 }{1 +  1 + 1}

\sf \implies  \dfrac{2 }{3}

‎ ‎ ‎

So our required result is proved that:

 \underline{ \boxed{ \tt\lim \limits_{x \to 0}\dfrac{(\sqrt[3]{1+x} - \sqrt[3]{1-x})}{x} =  \frac{2}{3} }}

 \rule{280}{1}

[If there's any difficulty in viewing the answer from app, kindly see the attachment.]

Attachments:
Similar questions