CBSE BOARD X, asked by Pervaiz133, 6 months ago

question number- 23​

Attachments:

Answers

Answered by Anonymous
4

Answer:

2 is the answer. Option b is the right answer.

Explanation:

Given,

x =  \dfrac{4ab}{a + b}

 \dfrac{x}{2a}  =  \dfrac{1}{2a}  \times  \dfrac{4ab}{  a+ b}  \\  \\  \frac{x}{2a}  =  \frac{2b}{a + b}  \:  \:  .....(i)

Applying componendo and dividendo in (i),

 \dfrac{x + 2a}{x - 2a}  =  \dfrac{2b + a + b}{2b - a - b}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \dfrac{x + 2a}{x - 2a}  =  \dfrac{a + 3b}{ - a   +  b }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \\  \\  \frac{x + 2a}{x - 2a}   =  \frac{a + 3b}{ - 1(a - b)}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \frac{x + 2a}{x - 2a} =  \frac{ -a  - 3b}{a - b}   \:  \:  ..........(ii) \:  \:  \:  \:

 \dfrac{x}{2b}  =  \dfrac{1}{2b}  \times  \dfrac{4ab}{a + b}  \\  \\  \frac{x}{2b}  =  \frac{2a}{a + b}  ....(iii)

Once again applying componendo and dividendo in (iii),

 \dfrac{x + 2b}{x - 2b}  =  \dfrac{2a + a + b}{2a - a -b }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \dfrac{x + 2b}{x - 2b}  =  \dfrac{3a + b}{ a - b }   \:  \: .........(iv)

Adding equation (ii) and (iii)

 \dfrac{x + 2a}{x - 2a}  +  \dfrac{x + 2b}{x - 2b}  =  \dfrac{3a + b}{ a -b }  +  \dfrac{ - a  - 3b}{a - b}  \\  \\ \dfrac{x + 2a}{x - 2a}  +  \dfrac{x + 2b}{x - 2b}  =  \dfrac{3a + b  - a - 3b}{a -b } \:  \:  \:  \:  \:  \:  \\  \\ \dfrac{x + 2a}{x - 2a}  +  \dfrac{x + 2b}{x - 2b}  =  \dfrac{2a - 2b}{a -b }  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \frac{x + 2a}{x - 2a}  +  \frac{x + 2b}{x - 2b}  =  \frac{2(a - b)}{(a - b)}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\frac{x + 2a}{x - 2a}  +  \frac{x + 2b}{x - 2b}   = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions