Math, asked by navyanarayani744, 1 month ago

question number B
please give answer ASAP​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given rational expression is

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x + 4}{x + 2}  = \dfrac{29}{10}

On taking LCM on LHS, we get

\rm :\longmapsto\:\dfrac{x(x + 2) + (x + 4)(x - 1)}{(x - 1)(x + 2)}= \dfrac{29}{10}

\rm :\longmapsto\:\dfrac{ {x}^{2} + 2x +  {x}^{2} + 4x - x - 4}{ {x}^{2}  + 2x - x - 2}= \dfrac{29}{10}

\rm :\longmapsto\:\dfrac{ 2{x}^{2} + 5x - 4}{ {x}^{2} + x- 2}= \dfrac{29}{10}

\rm :\longmapsto\:29( {x}^{2} + x - 2) = 10( {2x}^{2} + 5x - 4)

\rm :\longmapsto\:29{x}^{2} + 29x - 58 =  {20x}^{2} + 50x - 40

\rm :\longmapsto\:29{x}^{2} + 29x - 58  -  {20x}^{2} -  50x  +  40 = 0

\rm :\longmapsto\:9{x}^{2} - 21x - 18 =  0

\rm :\longmapsto\:3(3{x}^{2} - 7x - 6) =  0

\rm :\longmapsto\:3{x}^{2} - 7x - 6 =  0

\rm :\longmapsto\:3{x}^{2} - 9x  + 2x- 6 =  0

\rm :\longmapsto\:3x(x - 3) + 2(x - 3) = 0

\rm :\longmapsto\:(x - 3)(3x + 2) = 0

\bf\implies \:x = 3 \:  \: or \:  \: x =  -  \: \dfrac{2}{3}

Verification :-

Given expression is

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x + 4}{x + 2}  = \dfrac{29}{10}

When x = 3

Consider LHS

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x + 4}{x + 2}

\rm  \:  =  \: \:\dfrac{3}{3 - 1}  + \dfrac{3 + 4}{3 + 2}

\rm  \:  =  \: \:\dfrac{3}{2}  + \dfrac{7}{5}

\rm  \:  =  \: \:\dfrac{15 + 14}{10}

\rm  \:  =  \: \:\dfrac{29}{10}

Hence, Verified

 \bf \: When \: x =  -  \: \dfrac{2}{3}

Consider LHS

\rm :\longmapsto\:\dfrac{x}{x - 1}  + \dfrac{x + 4}{x + 2}

\rm  \:  = \:\dfrac{-  \: \dfrac{2}{3}}{-  \: \dfrac{2}{3} - 1}  + \dfrac{-  \: \dfrac{2}{3}+ 4}{-  \: \dfrac{2}{3} + 2}

\rm  \:  = \:\dfrac{-  \: \dfrac{2}{3}}{\: \dfrac{ - 2 - 3}{3}}  + \dfrac{-  \: \dfrac{2 + 12}{3}}{ \: \dfrac{ - 2 + 6}{3}}

\rm \:  =  \:  \:\dfrac{ - 2}{ - 5}  + \dfrac{10}{4}

\rm \:  =  \:  \:\dfrac{2}{5}  + \dfrac{5}{2}

\rm \:  =  \:  \:\dfrac{4 + 25}{10}

\rm \:  =  \:  \:\dfrac{29}{10}

Hence, Verified

Similar questions