question of inequality class 11.
it is urgent . *NO SPAM*
ANSWER ONLY IF YOU KNOW
please provide solution also
Answers
AnsWer :
d ) None of these.
QuestioN :
Solve :
- a ) ( - ∞ , 0 ) ∪ ( 1 , ∞ )
- b ) ( ∞ , 0 ) ∪ ( 1 , - ∞ )
- c ) ( - ∞ , 0 ) ∩ ( 1 , ∞ )
- d ) None of these.
SolutioN :
» Taking Modules part,
☛ Condition 1.
» Let's take Condition,
- If x + 2 equal to and larger than.
- Both sides taking ( - 2 )
☛ Condition 2.
- If x + 2 is less than.
- Both sides taking ( - 2 )
✐ Let's Taking Condition :
According to Condition,
- x lies on - 2 and greater than - 2,
- Now, x > 1.
If we combine, So We can write as,
✐ Condition 2. ( Modules )
- Both sides multiple by x.
# According to Condition,
- x lies on less than 1 / 2, x > 1 / 2.
- Now, x < - 2
- If we combine, So We can write as,
Now, according to observation, condition 1 , 2 We can say that.
Therefore, the correct option is d ) none of these.
Answer:
AnsWer :
d ) None of these.
QuestioN :
Solve : \tt \dagger \: \: \: \: \: \dfrac{ |x + 2| - x }{x} < 2.†
x
∣x+2∣−x
<2.
a ) ( - ∞ , 0 ) ∪ ( 1 , ∞ )
b ) ( ∞ , 0 ) ∪ ( 1 , - ∞ )
c ) ( - ∞ , 0 ) ∩ ( 1 , ∞ )
d ) None of these.
SolutioN :
\tt \dagger \: \: \: \: \: \dfrac{ |x + 2| - x }{x} < 2.†
x
∣x+2∣−x
<2.
» Taking Modules part,
☛ Condition 1.
\tt : \implies |x + 2|:⟹∣x+2∣
» Let's take Condition,
If x + 2 equal to and larger than.
\tt : \implies x + 2 \geq0.:⟹x+2≥0.
Both sides taking ( - 2 )
\tt : \implies x + 2 - 2 \geq0- 2:⟹x+2−2≥0−2
\tt : \implies x \geq - 2:⟹x≥−2
\rule{100}5
☛ Condition 2.
If x + 2 is less than.
\tt : \implies x + 2 < 0.:⟹x+2<0.
Both sides taking ( - 2 )
\tt : \implies x + 2 - 2 < 0 - 2.:⟹x+2−2<0−2.
\tt : \implies x < - 2.:⟹x<−2.
✐ Let's Taking Condition :
\tt \dagger \: \: \: \: \: \dfrac{ x + 2 - x }{x} < 2.†
x
x+2−x
<2.
\tt : \implies x + 2 - x < 2x:⟹x+2−x<2x
\tt : \implies \cancel{x} + 2 \cancel{- x} < 2x:⟹
x
+2
−x
<2x
\tt : \implies 2 < 2x:⟹2<2x
\tt : \implies \dfrac{2}{2} < x:⟹
2
2
<x
\tt : \implies 1 < x:⟹1<x
\tt : \implies x > 1.:⟹x>1.
According to Condition,
x lies on - 2 and greater than - 2,
Now, x > 1.
If we combine, So We can write as,
\tt \dagger \: \: \: \: \: \: \: \: \: \: \: \: x \in [ -2 , 0 ) \cup[ 1, \infty )†x∈[−2,0)∪[1,∞)
\rule{100}5
✐ Condition 2. ( Modules )
\tt \dagger \: \: \: \: \: \dfrac{ - x - 2 - x }{x} < 2.†
x
−x−2−x
<2.
\tt : \implies \dfrac{ - x - 2 - x }{x} < 2.:⟹
x
−x−2−x
<2.
\tt : \implies \dfrac{ - 2x - 2 }{x} < 2.:⟹
x
−2x−2
<2.
Both sides multiple by x.
\tt : \implies \dfrac{ \cancel x (- 2x - 2) }{ \cancel{x}} < 2x.:⟹
x
x
(−2x−2)
<2x.
\tt : \implies 0 < 2x + 2x + 2:⟹0<2x+2x+2
\tt : \implies 0 < 4x + 2:⟹0<4x+2
\tt : \implies - \dfrac{1}{2} < x:⟹−
2
1
<x
\tt : \implies x > - \dfrac{1}{2}:⟹x>−
2
1
# According to Condition,
x lies on less than 1 / 2, x > 1 / 2.
Now, x < - 2
If we combine, So We can write as,
\tt \dagger \: \: \: \: \: \: \: \: \: \: \: \: x \in ( - \infty , - 2 )†x∈(−∞,−2)
Now, according to observation, condition 1 , 2 We can say that.
\tt \dagger \: \: \: \: \: \: \: \: \: \: \: \: x \in ( - \infty , - 2 ) \cup[ 1, \infty )†x∈(−∞,−2)∪[1,∞)
Therefore, the correct option is d ) none of these.