Math, asked by tusharbajpai08studen, 5 days ago

Question on photo is given

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-A}}

In trapezium PQRS, it is given that, Length of parallel sides are

PQ = 12 cm

RS = 8 cm

and

Distance between PQ and RS is 5.5 cm.

We know,

Area of trapezium whose parallel sides are a units and b units respectively and distance between them is h units is given by

\boxed{\rm{  \:Area_{(Trapezium)} \:  =  \:  \frac{1}{2}(a \:  +  \: b) \times h \:  \: }} \\

Here, we have

\rm \: a \:  =  \: 12 \: cm \\

\rm \: b \:  =  \: 8 \: cm \\

\rm \: h \:  =  \: 5.5 \: cm \\

So, on substituting the values, we get

\rm \: Area_{(PQRS)} = \dfrac{1}{2}(12 + 8) \times 5.5 \\

\rm \: Area_{(PQRS)} = \dfrac{1}{2}(20) \times 5.5 \\

\rm \: Area_{(PQRS)} = 10 \times 5.5 \\

\rm\implies \:Area_{(PQRS)} \:  =  \: 55 \:  {cm}^{2}  \\

\large\underline{\sf{Solution-B}}

In trapezium PQRS, it is given that, Length of parallel sides are

PQ = 21 m

RS = 12 m

and

Distance between PQ and RS is 14 m.

We know,

Area of trapezium whose parallel sides are a units and b units respectively and distance between them is h units is given by

\boxed{\rm{  \:Area_{(Trapezium)} \:  =  \:  \frac{1}{2}(a \:  +  \: b) \times h \:  \: }} \\

Here, we have

\rm \: a \:  =  \: 21 \: m \\

\rm \: b \:  =  \: 12 \: m \\

\rm \: h \:  =  \: 14 \: m \\

So, on substituting the values, we get

\rm \: Area_{(PQRS)} = \dfrac{1}{2}(21 + 12) \times 14 \\

\rm \: Area_{(PQRS)} = 33 \times 7 \\

\rm\implies \:Area_{(PQRS)} \:  =  \: 231 \:  {m}^{2}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by BrainlyZendhya
1

Trapezium

A Trapezium is similar to a quadrilateral which has two parallel sides of unequal length and two non-parallel sides.

We know that, Area of a Trapezium,

{\boxed{\bullet\:{Area\:=\:{\dfrac{1}{2}}\:(a\:+\:b)\:\times\:h}}}

where,

  • a and b are two non-parallel sides
  • h is the height

As we went through the concept about Trapezium, Now, Let's move on finding the solution for our question.

A) In Trapezium PQRS, We have been given that,

  • \sf{a\:=\:8\:cm}
  • \sf{b\:=\:12\:cm}
  • \sf{h\:=\:5.5\:cm}

Substituting values in Formula, we get,

\sf\implies{{\dfrac{1}{2}}\:(a\:+\:b)\:\times\:h}

\sf\implies{{\dfrac{1}{2}}\:(8\:+\:12)\:\times\:5.5}

\sf\implies{{\dfrac{1}{2}}\:\times\:20\:\times\:5.5}

\sf\implies{{\dfrac{1}{\cancel{{2}}}}\:\times\:{\cancel{20}}\:\times\:5.5}

\sf\implies{10\:\times\:5.5}

\sf\implies{55\:cm^2}

B) In Trapezium PQRS, We have been given that,

  • \sf{a\:=\:12\:cm}
  • \sf{b\:=\:21\:cm}
  • \sf{h\:=\:14\:cm}

Substituting values in Formula, we get,

\sf\implies{{\dfrac{1}{2}}\:(a\:+\:b)\:\times\:h}

\sf\implies{{\dfrac{1}{2}}\:(12\:+\:21)\:\times\:14}

\sf\implies{{\dfrac{1}{2}}\:\times\:33\:\times\:14}

\sf\implies{{\dfrac{1}{\cancel{{2}}}}\:\times\:33\:\times\:{\cancel{14}}}

\sf\implies{33\:\times\:7}

\sf\implies{231\:cm^2}

Hence, The Area of the Trapezium A is 55 cm² and Trapezium B is 231 cm².

Similar questions