☢ QUESTION ☢
__________________________
PQR is a triangle, right-angled at P. If PQ = 10 cm
and PR = 24 cm, find QR.
__________________________
DON'T SPAM ❌ ALSO FRIENDS
GIVE QUALITY ANSWER ✅
NO COPIED ANSWER
SPAMMERS WILL BE REPORTED ⚠
Answers
GIVEN :-
______________________
☢ HENCE THE LENGTH OF QR IS 26 CM ☢
______________________
Answer:
Give thanks
Step-by-step explanation:
GIVEN :-
\small \bold \pink{→~ PQ~ =~ 10 ~CM~ , ~ PR~ = ~24~ CM }→ PQ = 10 CM , PR = 24 CM
\large \underline\bold{LET'S ~QR ~BE~ x ~CM}
LET
′
S QR BE x CM
\small\bold \pink{I ~RIGHT~ ANGLED ~TRAINGLE ~QPR}I RIGHT ANGLED TRAINGLE QPR
\bold{( HYPOTENUSE)^2 = ( BASE)^2 + ( PERPENDICULAR)^2 } \: \: \: \: \: \: \: \: \: \bold \pink{[ \: by \: pythagoras \: theorem \:] }(HYPOTENUSE)
2
=(BASE)
2
+(PERPENDICULAR)
2
[bypythagorastheorem]
\small \bold\red\longmapsto < /p > < p > \bold \red{( QR)^2 = ( PQ)^2 + ( PR)^2 }⟼</p><p>(QR)
2
=(PQ)
2
+(PR)
2
\large \red\longmapsto \bold\red{ {x}^{2} = (10 {}^{2}) + (24) {}^{2} }⟼x
2
=(10
2
)+(24)
2
\large \red\longmapsto \bold \red{x {}^{2} = 100 + 576 = 676}⟼x
2
=100+576=676
\large \orange\longmapsto \bold \orange{ \sqrt{675} = 26 \: cm \: \checkmark}⟼
675
=26cm✓
______________________
☢ HENCE THE LENGTH OF QR IS 26 CM ☢
______________________