QUESTION :
PRODUCT OF 4 NATURAL NUMBERS IS " 840 ".
FIND THE NUMBERS :
I NEED IT .....
DO IT FAST ......
^_^ ^_^ ^_^ ^_^ ^_^ ^_^
❤❤❤❤❤❤❤❤❤❤❤
Answers
Answered by
12
The natural numbers can be written as :-
a , a + 1 , a + 2 , a + 3 .
Product of 4 natural numbers is given 840 .
⇒ a ( a + 1 )( a + 2 )( a + 3 ) = 840
⇒ a ( a + 3 )( a + 1 )( a + 2 ) = 840
⇒ ( a² + 3 a )( a² + a + 2 a + 2 ) = 840
⇒ ( a² + 3 a )( a² + 3 a + 2 ) = 840
⇒ ( a² + 3 a + 1 - 1 )( a² + 3 a + 1 + 1 ) = 840
Using ( a + b )( a - b ) = a² - b² :-
⇒ ( a² + 3 a + 1 )² - 1 = 840
⇒ ( a² + 3 a + 1 )² = 841
⇒ a² + 3 a + 1 = ± 29
Neglect the negative sign :-
⇒ a² + 3 a - 28 = 0
⇒ a² + 7 a - 4 a - 28 = 0
⇒ a ( a + 7 ) - 4 ( a + 7 ) = 0
a = 4 neglecting the negative value .
So numbers are a , a + 1 , a + 2 , a + 3
⇒ 4 , 5 , 6 , 7
The numbers are 4 , 5 , 6 , 7 .
shreya32457:
excellent job ......
Similar questions