Math, asked by kamalhajare543, 5 hours ago

Question:-
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Prove That Answer is 1
\sf \dashrightarrow \ \dfrac{1}{3 + \sqrt{7}} \ + \ \dfrac{1}{\sqrt{7} + \sqrt{5}} \ + \ \dfrac{1}{\sqrt{5} + \sqrt{3}} \ + \ \dfrac{1}{\sqrt{3} + 1} = 1\\

Spammer Go Away ​

Answers

Answered by ProximaNova
21

\large \rm \red{\widetilde{To\ prove:-}}

 \rm \dfrac{1}{3 + \sqrt{7}} \ + \ \dfrac{1}{\sqrt{7} + \sqrt{5}} \ + \ \dfrac{1}{\sqrt{5} + \sqrt{3}} \ + \ \dfrac{1}{\sqrt{3} + 1} = 1

\large \rm \red{\widetilde{Taking\ RHS:-}}

\rm :\longmapsto \dfrac{1}{3 + \sqrt{7}} \ + \ \dfrac{1}{\sqrt{7} + \sqrt{5}} \ + \ \dfrac{1}{\sqrt{5} + \sqrt{3}} \ + \ \dfrac{1}{\sqrt{3} + 1}

Rationalizing, we get

\rm :\longmapsto \dfrac{1}{3+\sqrt7} \times \dfrac{3-\sqrt7}{3-\sqrt7} + \dfrac{1}{\sqrt7 + \sqrt5} \times \dfrac{\sqrt7 - \sqrt5}{\sqrt7 - \sqrt5}

\rm \,  \, \, \, \, \; \; \;+ \dfrac{1}{\sqrt5 + \sqrt3} \times \dfrac{\sqrt5 - \sqrt3}{\sqrt5-\sqrt3} + \dfrac{1}{\sqrt3 + 1} \times \dfrac{\sqrt3 - 1}{\sqrt3 -1}

\rm :\longmapsto \dfrac{3 - \sqrt7}{(3)^2 - (\sqrt7)^2}  + \dfrac{\sqrt7 - \sqrt5}{(\sqrt7)^2 - (\sqrt5)^2} +\dfrac{\sqrt5 - \sqrt3}{(\sqrt5)^2 - (\sqrt3)^2}  + \dfrac{\sqrt3-1}{(\sqrt3)^2 - 1^2}

\rm :\longmapsto \dfrac{3 - \sqrt7}{9-7}  + \dfrac{\sqrt7 - \sqrt5}{7-5} +\dfrac{\sqrt5 - \sqrt3}{5-3}  + \dfrac{\sqrt3-1}{3-1}

\rm :\longmapsto \dfrac{3 - \sqrt7}{2}  + \dfrac{\sqrt7 - \sqrt5}{2} +\dfrac{\sqrt5 - \sqrt3}{2}  + \dfrac{\sqrt3-1}{2}

\rm :\longmapsto \dfrac{3\cancel{ - \sqrt7 + \sqrt7} \cancel{- \sqrt5 + \sqrt5}\cancel{ - \sqrt3 + \sqrt3} - 1}{2}

\rm :\longmapsto \dfrac{2}{2}

\rm :\longmapsto 1

= RHS

\color{#FF7968}{\rule{36pt}{7pt}}\color{#4FB3F6}{\rule{36pt}{7pt}}\color{#FBBE2E}{\rule{36pt}{7pt}}\color{#60D399}{\rule{36pt}{7pt}}\color{#6D83F3}{\rule{36pt}{7pt}}

Answered by Rahul7895
3

Answer:

Refer To The Attachment

(Please don't mind if there's anything wrong about handwriting )

hope it helps

Attachments:
Similar questions