Math, asked by Anonymous, 1 month ago

Question:-
Rationalise the denominator of:-
 \frac{1}{ \sqrt{7 } - 2 }
Note:-
▪️Grade - 9
▪️Chapter - Polynomials
✅Quality answer needed
✅Step - by - step explanation required ( must )
✗No spam please..​​

Answers

Answered by Anonymous
36

\Huge \fbox{{\color{magenta}{\textsf{\textbf{Solution :-}}}}} \\

Given :-

\: \: \: \: \: \: \longmapsto \sf \frac{1}{ \sqrt{7} - 2 } \\

Rationalising the denominator :-

Multiply the fraction by the conjugate of the denominator i.e., √7 - 2

\: \: \: \: \: \:\longmapsto \sf \frac{1}{ \sqrt{7} - 2 } \times  \frac{ \sqrt{7} + 2 }{ \sqrt{7} + 2}  \\

\: \: \: \: \: \: \longmapsto \sf \frac{ \sqrt{7} + 2}{ {( \sqrt{7})}^{2} -  {(2)}^{2} } \\

\: \: \: \: \: \: \longmapsto \sf \frac{ \sqrt{7} +2}{7 - 4} \\

\: \: \: \: \: \: \longmapsto \sf \frac{ \sqrt{7} +2}{3} \\

Identity Used :-

\large\longmapsto \sf (a-b)(a+b)=a^2-b^2\\

Answered by StormEyes
9

Solution!!

1/(√7 - 2)

Rationalise the denominator by multiplying the fraction.

= 1/(√7 - 2) × (√7 + 2)/(√7 + 2)

= [1(√7 + 2)]/[(√7 - 2)(√7 + 2)]

Simplify the expressions using (a - b)(a + b) = a² - b².

= [1(√7 + 2)]/[(√7)² - (2)²]

= [1(√7 + 2)]/[7 - 4]

= [1(√7 + 2)]/3

Distribute 1 through the parentheses.

= (√7 + 2)/3

More identities:-

→ (a + b)² = a² + b² + 2ab

→ (a - b)² = a² + b² - 2ab

→ (a + b)(a - b) = a² - b²

→ (a + b)³ = a³ + b³ + 3ab(a + b)

→ (a - b)³ = a³ - b³ - 3ab(a - b)

→ a³ - b³ = (a - b)(a² + b² + ab)

→ a³ + b³ = (a + b)(a² + b² - ab)

Similar questions