Math, asked by Anonymous, 4 months ago

Question:-
(Refer to the attachment).
________...
Answer with proper explanation required. ​

Attachments:

Answers

Answered by Anonymous
18

Given,

  • AB = AC
  • AD is an angle bisector
  • AD = 2√2 cm

Since AB = AC, opposite angles are ought to be equal.

\implies ABD = ACD

From Angle Sum Properly,

A + B + C = 180°

\implies 90° + ABD + ACD = 180°

\implies 2ABD = 90°

\implies ABD = ACD = 45° (ABC = ACB = 45°)

Now,

tan(ABD) = AD/BD

\longrightarrow tan45° = 2√2/BD

\longrightarrow BD = 2√2cm

Likewise, CD = 2√2cm.

We know that, BC = BD + CD = 4√2cm

Now,

sin(ABC) = AC/BC

\longrightarrow sin45° = AC/4√2

\longrightarrow AC = 4√2/√2

\longrightarrow AC = AB = 4cm

For perimeter of ∆ABC,

AB + BC + AC

\longrightarrow 4 + 4 + 4√2

\longrightarrow (8 + 4√2) cm

Thus, the perimeter of ∆ABC is 8 + 4√2 cm.

Attachments:
Answered by EthicalElite
15

 \underline{\underline{\sf{\pink{Given :} }}}

  • ∆ABC is a right Angled triangle
  • AB = AC
  • AD is bisector of ∠A
  •  \sf AD = 2\sqrt{2}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \underline{\underline{\sf{\pink{To\:Find :} }}}

  • Perimeter of ∆ABC

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

\underline{\underline{\sf{\pink{Solution :} }}}

In ∆ABC,

AB = AC

\underline{\tt{As\:we\:know\:that,}}

\star\:{\boxed{\sf{\pink{Angle \: opposite \: to \: equal \: sides \: are \: equal }}}}

 : \: \implies \sf{\angle C  = \angle B - (i)}

\underline{\tt{Now, \:by \: angle\:sum \: property,}}

∠A + ∠B + ∠C = 180°

From (i)

∠A + ∠B + ∠B = 180°

 : \: \implies \sf{90^{\circ} + 2 \angle B = 180^{\circ}}

 : \: \implies \sf{2 \angle B = 180^{\circ} - 90^{\circ}}

 : \: \implies \sf{2 \angle B = 90^{\circ}}

 : \: \implies \sf{ \angle B = \dfrac{90^{\circ}}{2}}

 : \: \implies \sf{\angle B = 45^{\circ}}

\underline{\tt{Now, \: \angle B = \angle C}}

 : \: \implies \sf{\angle C = 45^{\circ}}

_______________________________

In ∆ABD

As, AD bisects BC,

Therefore, ∠ADB = 90°

\underline{\tt{Now, \: by \: angle\:sum \: property,}}

∠B + ∠DAB + ∠ADB = 180°

45° + ∠DAB + 90° = 180°

45° + ∠DAB = 180° - 90°

∠DAB = 90° - 45°

∠DAB = 45°

As, ∠B = ∠DAB (both 45°) and we know that sides opposite to equal angles are equal

Therefore, BD = AD - (ii)

_______________________________

In ∆ACD

As, AD bisects BC,

Therefore, ∠ADC = 90°

\underline{\tt{Now, \: by \: angle\:sum \: property,}}

∠C + ∠DAC + ∠ADC = 180°

45° + ∠DAC + 90° = 180°

45° + ∠DAC = 180° - 90°

∠DAC = 90° - 45°

∠DAC = 45°

As, ∠C = ∠DAC (both 45°) and we know that sides opposite to equal angles are equal

Therefore, CD = AD -(iii)

_______________________________

From (ii) and (iii),

BD + CD = AD + AD

Now, we have BD + CD = BC

 : \: \implies \sf{BC  = 2AD}

Now, we are given AD =  \sf 2\sqrt{2}cm

 : \: \implies \sf{BC  = 2 \times 2\sqrt{2}}

 : \: \implies \sf{BC  = 4\sqrt{2}cm }

_______________________________

In ∆ABC

\underline{\tt{By \: Pythagoras' \: theorem,}}

\star\:{\boxed{\sf{\pink{H^{2} = B^{2} + P^{2}}}}}

 : \: \implies \sf{BC^{2} = AB^{2} + AC^{2}}

 : \: \implies \sf{{(4\sqrt{2})}^{2} = AB^{2} + AC^{2}}

\underline{\tt{Now, \: we \: are \: given \: AB = AC}}

 : \: \implies \sf{{(4\sqrt{2})}^{2} = AB^{2} + AB^{2}}

 : \: \implies \sf{16 \times 2 = 2AB^{2}}

 : \: \implies \sf{32 = 2AB^{2}}

 : \: \implies \sf{\dfrac{32}{2} = AB^{2}}

 : \: \implies \sf{16 = AB^{2}}

 : \: \implies \sf{\sqrt{16} = AB}

 : \: \implies \sf{AB = 4 cm}

As, AB = AC (given)

 : \: \implies \sf{AC = 4 cm}

Now, We have

  • AB = 4 cm
  • AC = 4 cm
  • \sf{BC  = 4\sqrt{2}cm }

_______________________________

\underline{\tt{Now, \:we \: have \: to \: find \: perimeter,}}

\star\:{\boxed{\sf{\pink{Perimeter \: of \: triangle = a + b + c}}}}

In ∆ABC,

a = AB = 4 cm

b = AC = 4 cm

c = \sf{BC  = 4\sqrt{2}cm }

 : \implies \sf{Perimeter = 4 cm + 4 cm + 4\sqrt{2}cm }

 : \implies \sf{Perimeter = 8 + 4\sqrt{2}cm}

 \pink{\sf \therefore \: Perimeter \: of  \: \triangle ABC = 8 + 4\sqrt{2}cm}

Attachments:
Similar questions