Math, asked by sushma3757, 11 months ago

question show that and solve this​

Attachments:

Answers

Answered by ihrishi
0

Step-by-step explanation:

 \frac{ {a}^{ - 1} }{ {a}^{ - 1} +   {b}^{ - 1}}  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1}  -    {b}^{ - 1}}  =  \frac{2 {b}^{2} }{ {b}^{2}  -  {a}^{2} }  \\ LHS =  \frac{ {a}^{ - 1} }{ {a}^{ - 1} +   {b}^{ - 1}}  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1}  -    {b}^{ - 1}} \\  =  \frac{ \frac{1}{a} }{ \frac{1}{a} +  \frac{1}{b}  }  + \frac{ \frac{1}{a} }{ \frac{1}{a}  -   \frac{1}{b}  }  \\  = \frac{ \frac{1}{a} }{ \frac{b + a}{ab} }  + \frac{ \frac{1}{a} }{ \frac{b  - a}{ab} }  \\  =  \frac{ab}{a(b + a)}  +  \frac{ab}{a(b  -  a)}  \\ =  \frac{b}{(b + a)}  +  \frac{b}{(b  -  a)}   \\  =    \frac{b \{b - a + b + a  \}}{(b + a)(b  -  a)}   \\ =    \frac{b \{2b  \}}{(b^{2}   -  a^{2}) }  \\ =    \frac{2b^{2}}{b^{2}   -  a^{2}}  \\  = RHS \\

Thus proved

Similar questions