question : show that exactly one out of the numbers n , n + 2 or n + 4 is divisible by 3 .
plzz answer my dear friends it's urgent......
Answers
then by putting values
n=1
n+2=3
n+4=5
hence for any odd value n+2 is divisible by 3
let n be any even number 2
then by putting values
n=2
n+2=4
n+4=6
hence for any even value n+4 is divisible by 3
so it is proved for any number n, exactly one out of the numbers n , n + 2 or n + 4 is divisible by 3 .
Step-by-step explanation:
Euclid's division Lemma any natural number can be written as: .
where r = 0, 1, 2,. and q is the quotient.
thus any number is in the form of 3q , 3q+1 or 3q+2.
case I: if n =3q
n = 3q = 3(q) is divisible by 3,
n + 2 = 3q + 2 is not divisible by 3.
n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.
case II: if n =3q + 1
n = 3q + 1 is not divisible by 3.
n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.
n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.
case III: if n = 3q + 2
n =3q + 2 is not divisible by 3.
n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.
n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.
thus one and only one out of n , n+2, n+4 is divisible by 3.
Hence, it is solved
THANKS
#BeBrainly.