Math, asked by Anonymous, 23 days ago

Question!

sin²5 + sin²10 + sin²15 +.... + sin²85° + sin²(90°) = ?

Don't spam..!!

Answers

Answered by mathdude500
70

\large\underline{\sf{Solution-}}

Consider

\rm \: {sin}^{2}5 \degree  +  {sin}^{2}10 \degree  +  {sin}^{2}15 \degree  +  -  -  -  +  {sin}^{2}85 \degree  +  {sin}^{2}90

We have to first pair the angles whom sum is 90°.

\rm \:  ({sin}^{2}5 \degree  +  {sin}^{2}85 \degree ) + ({sin}^{2}10 \degree  +  {sin}^{2}80 \degree ) + ({sin}^{2}15 \degree  +  {sin}^{2}75 \degree ) +  \\ \rm \: ({sin}^{2}20 \degree  +  {sin}^{2}70 \degree ) + ({sin}^{2}25 \degree  +  {sin}^{2}65 \degree ) + ({sin}^{2}35 \degree  +  {sin}^{2}55 \degree ) + \\ \rm \:  ({sin}^{2}40 \degree  +  {sin}^{2}50 \degree ) + ({sin}^{2}30\degree  +  {sin}^{2}60 \degree ) +  {sin}^{2}45 \degree  +  {sin}^{2}90 \degree  \\

can be further rewritten as

\rm \:  ({sin}^{2}5 \degree  +  {sin}^{2}(90\degree  - 5 \degree ) )+ ({sin}^{2}10 \degree  +  {sin}^{2}(90 \degree  - 10 \degree )) + ({sin}^{2}15 \degree  +  {sin}^{2}(90 \degree  - 15 \degree )) +  \\ \rm \: ({sin}^{2}20 \degree  +  {sin}^{2}(90 \degree - 20 \degree  )) + ({sin}^{2}25 \degree  +  {sin}^{2}(90\degree  - 25 \degree )) + ({sin}^{2}35 \degree  +  {sin}^{2}(90 \degree - 35) ) + \\ \rm \:  ({sin}^{2}40 \degree  +  {sin}^{2}(90\degree  - 40 \degree )) + ({sin}^{2}30\degree  +  {sin}^{2}(90 \degree  - 30 \degree )) +   \dfrac{1}{2}  + 1  \\

We know,

\boxed{\tt{  \:  \: sin(90 \degree  - x) = cosx \: }} \\

So, using this identity, we get

\rm \:  ({sin}^{2}5 \degree  +  {cos}^{2}5 \degree ) + ({sin}^{2}10 \degree  +  {cos}^{2}10 \degree ) + ({sin}^{2}15 \degree  +  {cos}^{2}15 \degree ) +  \\ \rm \: ({sin}^{2}20 \degree  +  {cos}^{2}20 \degree ) + ({sin}^{2}25 \degree  +  {cos}^{2}25 \degree ) + ({sin}^{2}35 \degree  +  {cos}^{2}35 \degree ) + \\ \rm \:  ({sin}^{2}40 \degree  +  {cos}^{2}40 \degree ) + ({sin}^{2}30\degree  +  {cos}^{2}30 \degree ) +  \dfrac{3}{2}   \\

We know that,

\boxed{\tt{  \:  \:  {sin}^{2}\theta  +  \:  {cos}^{2}\theta  \:  =  \: 1 \:  \: }} \\

So, using this identity, we get

\rm \:  = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \dfrac{3}{2}

\rm \:  =  \: 8 + \dfrac{3}{2}

\rm \:  =  \: \dfrac{16 + 3}{2}

\rm \:  =  \: \dfrac{19}{2}

Hence,

\boxed{\tt{ \rm \: {sin}^{2}5 \degree  +  {sin}^{2}10 \degree +  -  -  -  +  {sin}^{2}85 \degree  +  {sin}^{2}90 = \dfrac{19}{2} }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by ItzzTwinklingStar
77

GIVEN:

  • sin²5° + sin²10° + sin²15° + sin²20° + sin²25° + sin²30° + sin²35° + sin²40° + sin²45° + sin²50° + sin²55° + sin²60° + sin²65° + sin²70° + sin²75° + sin²80° + sin²85 + cos²45°

Formula used:

 \\  { \underline{ \boxed{ \bf{  \pink{sin^{2} (90 -  \theta) = cos ^{2}  \theta}}}}} \\  \\

 { \underline{ \boxed{ \bf{  \red{ 1 \: sin^{2} \theta + cos ^{2}  \theta}}}}} \\  \\

Solution:

:\impliessin2 5° + sin2 10° + sin2 15° + sin2 20° + sin2 25° + sin2 30° + sin2 35°+ sin2 40° + sin 2 45° + sin2 50° + sin2 55° + sin2 60° + sin2 65° + sin2 70° + sin2 75° + sin2 80° + sin2 85° + sin2 90°.

:\implies (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + (sin2 15° + sin2 75° ) + (sin2 20°+ sin2 70°) + (sin2 25° + sin2 65°) + (sin2 30° + sin2 60°) + (sin2 35° + sin2 55°) + (sin2 40° + sin2 50°) + sin 2 45° + sin2 90°.

:\implies 1+1+1+1+1+1+1+1+1

:\implies 9

Similar questions