Question!
sin²5 + sin²10 + sin²15 +.... + sin²85° + sin²(90°) = ?
Don't spam..!!
Answers
Consider
We have to first pair the angles whom sum is 90°.
can be further rewritten as
We know,
So, using this identity, we get
We know that,
So, using this identity, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
GIVEN:
- sin²5° + sin²10° + sin²15° + sin²20° + sin²25° + sin²30° + sin²35° + sin²40° + sin²45° + sin²50° + sin²55° + sin²60° + sin²65° + sin²70° + sin²75° + sin²80° + sin²85 + cos²45°
Formula used:
Solution:
sin2 5° + sin2 10° + sin2 15° + sin2 20° + sin2 25° + sin2 30° + sin2 35°+ sin2 40° + sin 2 45° + sin2 50° + sin2 55° + sin2 60° + sin2 65° + sin2 70° + sin2 75° + sin2 80° + sin2 85° + sin2 90°.
(sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + (sin2 15° + sin2 75° ) + (sin2 20°+ sin2 70°) + (sin2 25° + sin2 65°) + (sin2 30° + sin2 60°) + (sin2 35° + sin2 55°) + (sin2 40° + sin2 50°) + sin 2 45° + sin2 90°.
1+1+1+1+1+1+1+1+1
9