Question: Solve (2xy + y - tany )dx + (x2 - xtan^2y + sec2y) dy = 0
Answers
Answered by
0
Answer: On separating the variables (dividing the equation by \tan x \tan y)
⇒
tanx
sec
2
x
dx=−
tany
sec
2
y
dy
On integrating both sides, we get
∫
tanx
sec
2
x
dx=−∫
tany
sec
2
y
dy
Put tanx=u⇒sec
2
x.dx=du and tany=v⇒sec
2
y.dy=dv
∴∫
u
du
=−∫
v
dv
⇒logu=−logv+logc
⇒u=
v
c
⇒u.v=c
∴tanx.tany=c
Step-by-step explanation:
Answered by
0
Answer:
(2xy+y-tany)dx+(x^2-xtan^2y+sec^2y)dy=0
Step-by-step explanation:
pls mark me as brainlist.
Similar questions