Math, asked by Anonymous, 8 days ago

Question :

Solve...

$\longrightarrow\tt{\frac{3y + 4}{2-6y} = \frac{-2}{\:5}}$

Answers

Answered by BrainlySparrow
99

Solution :-

We have,

\longrightarrow\sf{\dfrac{3y + 4}{2-6y} = \dfrac{-2}{\:5}}

  • Cross multiply,

\longrightarrow\sf{(3y+4) 5 = (2-6y)-2}

 \sf\longrightarrow\sf{3y \times 5 +4 \times 5= 2 \times -2 -6y \times -2}

  • In case of -6y × -2 (-) (-) will get cancelled and will result to 12y.

\longrightarrow\sf{15y + 20 = -4 + 12y}

  • Take 12y to L.H.S. and 20 to R.H.S.

\longrightarrow\sf{15y - 12y = -4-20}

\longrightarrow\sf{3y = -24}

  • Take 3 to R.H.S.,

\longrightarrow\sf{y = \dfrac{-24}{\:3}}

  • Cancel the terms,

\longrightarrow\sf{y =\cancel{ \dfrac{-24}{\:3}}}

 \red{\longrightarrow \boxed{\bf{  \pink{y = \pink{-8}}}} \:  \bigstar}

$\red{\sf{\underline{\therefore \: Value \: of \: y \: is \:\bf{-8.}}}}$

Answered by ANTMAN22
8

Given equation:

\mathsf{\to \ \frac{3y+4}{2-6y} =\frac{-2}{5} }

What to do:

We have to solve the given equation

Solution:

\mathsf{\frac{3y+4}{2-6y} =\frac{-2}{5} }\\\\\mathsf{Or,5(3y+4)=-2(2-6y)}\\\\\mathsf{Or,15y+20=-4+12y}\\\\\mathsf{Or,15y-12y=-4-20}\\\\\mathsf{Or,3y=-24}\\\\\mathsf{Or,y=\frac{-24}{3} }\\\\\mathsf{Or,y=-8}

The value of y=-8

Similar questions