Math, asked by Anonymous, 5 hours ago

Question :-


Solve the attachment!!!


No spam!! ​

Attachments:

Answers

Answered by rajeevchaudhary170r
0

Step-by-step explanation:

I hope this is helpful for you

Attachments:
Answered by mathdude500
5

Given Question

Prove that,

\displaystyle\lim_{x \to  \infty }\rm  \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}  = e

 \red{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to  \infty }\rm  \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}

Let assume that

\rm :\longmapsto\:y = \displaystyle\lim_{x \to  \infty }\rm  \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}

Taking log on both sides, we get

\rm :\longmapsto\: log_{e}(y)  = \displaystyle\lim_{x \to  \infty }\rm   log_{e} \bigg[1 + {\dfrac{1}{x} }\bigg]^{x}

We know,

 \red{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx}}}

So, using this, we get

\rm :\longmapsto\: log_{e}(y)  = \displaystyle\lim_{x \to  \infty }\rm   xlog_{e} \bigg[1 + {\dfrac{1}{x} }\bigg]

We know,

\rm :\longmapsto\:\boxed{\tt{  log_{e}(1 + x) = x - \dfrac{ {x}^{2} }{2} + \dfrac{ {x}^{3} }{3} +  -  -  -  - }}

So, using this, we get

\rm :\longmapsto\: log_{e}(y)  = \displaystyle\lim_{x \to  \infty }\rm   x \bigg[\dfrac{1}{x}  -  {\dfrac{1}{ {2x}^{2} }  + \dfrac{1}{ {3x}^{3}} - \dfrac{1}{ {4x}^{4} } +  -  -  -   }\bigg]

So, using this ,we get

\rm :\longmapsto\: log_{e}(y)  = \displaystyle\lim_{x \to  \infty }\rm    \bigg[1  -  {\dfrac{1}{ 2x }  + \dfrac{1}{ {3x}^{2}} - \dfrac{1}{ {4x}^{3} } +  -  -  -   }\bigg]

\rm :\longmapsto\: log_{e}(y)  = 1

\bf\implies \:y = e

\bf\implies \:\:\displaystyle\lim_{x \to  \infty }\rm  \bigg[1 + {\dfrac{1}{x} }\bigg]^{x} = e

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1}}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga}}

Similar questions