Math, asked by saraspatil, 2 months ago

Question :-
State and prove mid point theorem
_______________________
kindly prove the mid point theorem using above diagram

Attachments:

Answers

Answered by himanshiarora5775
30

Step-by-step explanation:

it is in the attachment

hopes it will help✌️✌️

pls mark as brainliest !!!

Attachments:
Answered by Evilhalt
1544

 \small \rm \underline{The \: mid - point \: theorem \: is \: an \: useful \: fact}  \\  \small \rm \underline{about \: the \: triangle. \: with \: the \: help \: of \: mid - }   \\ \small \rm \underline{point \: theorem \: we \: can \: prove \: various \: results}  \\  \small \rm \underline{related \: to \: quadrilateral \: and \: parallelogram}</p><p>

Definition :-

\rm \bold{Mid-point Theorem \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \rm \small {The \: line \: segment \: joining \: the \: mid - points} \\  \rm \small{of \: any \: two \: sides \: of \: a \: triangle \: is \: parallel \: to} \\  \rm \small{the \: third \: side \: and \: equal \: to \: half \: of \: it .\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \rm \bold{GIVEN \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \small \rm{In \:  {\triangle ABC}, \:  E \:  and \:  F  \: are \:  the \:  mid  \: points} \\  \rm \small{ of  \: AB  \: and  \: AC,  \: respectively \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

\rm \bold{To  \: Prove \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \small \rm{EF \parallel BC  \: and  \: EF =  \frac{1}{2} \:  BC}

\rm \bold{Construction \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \rm \small{Through \:  vertex  \: C  \: draw \:  CD  \parallel BA and  \: let \:  it} \\  \rm \small{meets \: extended \:  EF \: at  \: D \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \large \rm \underline{ \purple{proof}}

\rm{Now  \: in  \: \triangle AEF \:  and \:  \triangle CDF}

 \rm{ \angle \: AFE =  \angle \: CFD} \rm \tiny{  \left[ vertically \: opposite \: angles\right]}

 \rm{AF = FC} \rm \tiny{  \left[ F, is  \: the  \: mid-point  \: of \:  AC \right]}

 \rm{and \:  \angle EAF =  \angle \: FCD} \rm \tiny{  \left[  \because \: alternate \:  interior \:  angles \: \right]}

 \rm{ \therefore \:  \triangle \:AEF \cong \:  \triangle CDF } \rm \small{  \left[ by \:  ASA \:  congruence  \: rule\right]}

 \rm \small{Then \:  AE = CD \:  and \:  AE = FD} \\ </p><p>   \rm \tiny{\left[ by \:  CPCT\right]} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eqation \: 1...

 \rm{Also,  \: AE = BE} \\  </p><p>   \rm \tiny{\left[ E  \: is  \: the \:  mid  \: point \:  of  \: AB\right]} \:  \:  \:  \:  \:  \:  \: eqation \: 2...

From equation (1) and (2) we get,

 \rm{AE = BE = CD} \:  \:  \:  \:  \:  \rm  \tiny{eqation \: 3....}

  \rm{ and  \: BE  \parallel \: CD} \:  \:  \:  \:  \rm \tiny{(by \: construction)}

so, BCDE is a parallelogram

 \rm \tiny{ \because \: one \: pair \: of \: opposite \: sides \: is \: parallel \: and \: equal}

 \rm{Then,  \: ED \parallel \:  BC  \: Or  \: EF  \parallel \: BC}

 \rm{ and  \: ED = BC}

 \rm{Now,  \: BC = ED  \: =  \: EF + FD} \rm \tiny{(from \: equation \: (1))}

 \rm{ = 2  \: EF}

 \small \rm \implies{EF \:   =  \frac{1}{2}  \: BC}

Hence,

the line segment joining the mid points of two sides of a triangle is parallel to the third side and equal to half of it.

Attachments:
Similar questions