Question :-
Subtract b(b² + 2b − 7) − 5 from 5b² − 8 and find the value of the expression obtained for b = – 3.
Answers
QuestioN :
Subtract b(b² + 2b − 7) − 5 from 5b² − 8 and find the value of the expression obtained for b = – 3.
GiveN :
- Subtract b(b² + 2b − 7) − 5 from 5b² − 8
- b = – 3.
To FiNd :
- The value of the expression
ANswer :
The value of the expression is b =
SolutioN :
5b² - 8 - b(b² + 2b − 7) - 5 = b - 3
5b² - 8 - 2b² + 2b - 7 - 5 = b - 3
5b² - 2b² + 2b - 8 - 7 - 5 = b - 3
3b² + 2b - 8 - 7 - 5 = b - 3
5b³ - 20 = b - 3
5b² = b - 3 + 20
5b² = b - 17
5b = 17
b =
∴Hence, the value of the expression is b =
Answer:
b = 17/5
Step-by-step explanation:
5b² - 8 - b(b² + 2b − 7) - 5 = b - 3
5b² - 8 - 2b² + 2b - 7 - 5 = b - 3
5b² - 2b² + 2b - 8 - 7 - 5 = b - 3
3b² + 2b - 8 - 7 - 5 = b - 3
5b³ - 20 = b - 3
5b² = b - 3 + 20
5b² = b - 17
5b² - 8 - b(b² + 2b − 7) - 5 = b - 3
5b² - 8 - 2b² + 2b - 7 - 5 = b - 3
5b² - 2b² + 2b - 8 - 7 - 5 = b - 3
3b² + 2b - 8 - 7 - 5 = b - 3
5b³ - 20 = b - 3
5b² = b - 3 + 20
5b²/b = 17
5b = 17
b = 17/5