Math, asked by Anonymous, 3 months ago

Question :-

Subtract b(b² + 2b − 7) − 5 from 5b² − 8 and find the value of the expression obtained for b = – 3.

Answers

Answered by BrainlyUnnati
6

QuestioN :

Subtract b(b² + 2b − 7) − 5 from 5b² − 8 and find the value of the expression obtained for b = – 3.

GiveN :

  • Subtract b(b² + 2b − 7) − 5 from 5b² − 8
  • b = – 3.

To FiNd :

  • The value of the expression

ANswer :

The value of the expression is b = \frac{17}{5}

SolutioN :

5b² - 8 - b(b² + 2b − 7) - 5 =  b - 3

5b² - 8 - 2b² + 2b - 7 - 5 = b - 3

5b² - 2b² + 2b - 8 - 7 - 5 = b - 3

3b² + 2b - 8 - 7 - 5 = b - 3

5b³ - 20 = b - 3

5b² = b - 3 + 20

5b² = b - 17

\frac{5b^2}{b}  = 17

5b = 17

b = \frac{17}{5}

∴Hence, the value of the expression is b = \frac{17}{5}

Answered by FindingLove
1

Answer:

b = 17/5

Step-by-step explanation:

5b² - 8 - b(b² + 2b − 7) - 5 =  b - 3

5b² - 8 - 2b² + 2b - 7 - 5 = b - 3

5b² - 2b² + 2b - 8 - 7 - 5 = b - 3

3b² + 2b - 8 - 7 - 5 = b - 3

5b³ - 20 = b - 3

5b² = b - 3 + 20

5b² = b - 17

5b² - 8 - b(b² + 2b − 7) - 5 =  b - 3

5b² - 8 - 2b² + 2b - 7 - 5 = b - 3

5b² - 2b² + 2b - 8 - 7 - 5 = b - 3

3b² + 2b - 8 - 7 - 5 = b - 3

5b³ - 20 = b - 3

5b² = b - 3 + 20

5b²/b = 17

5b = 17

b = 17/5

Similar questions