Math, asked by Anonymous, 1 year ago

Question ▶

TanA +Tan B/TanA -TanB=Sin(A+B)/Sin(A-B)

Answers

Answered by HrishikeshSangha
0

The answer \bf \frac{\tan A+\tan B}{\tan A - \tan B} = \frac{\sin [A+B]}{\sin [A-B]} is proven..

Given:

\frac{\tan A+\tan B}{\tan A - \tan B}

To Find:

\frac{\tan A+\tan B}{\tan A - \tan B} = \frac{\sin [A+B]}{\sin [A-B]}

Solution:
We know that

\tan A = \frac{\sin A}{\cos A}\\ \\\tan B = \frac{\sin B}{\cos B}\\

Putting this in the expression, we get

\frac{\tan A+\tan B}{\tan A - \tan B}=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}  }{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B} }

\frac{\tan A+\tan B}{\tan A - \tan B}= \frac{\frac{\sin A \cos B + \sin B\cos A}{\cos A\cos B} }{\frac{\sin A \cos B - \sin B\cos A}{\cos A\cos B}}

\frac{\tan A+\tan B}{\tan A - \tan B}= \frac{\sin A \cos B + \sin B\cos A}{\sin A \cos B - \sin B\cos A}\\

\frac{\tan A+\tan B}{\tan A - \tan B}=\frac{\sin[A+B]}{\sin[A-B]}

Hence we proved that \bf\frac{\tan A+\tan B}{\tan A - \tan B} = \frac{\sin [A+B]}{\sin [A-B]}.

#SPJ2

Similar questions