Math, asked by lMrLovel, 1 month ago

Question :

\begin{gathered}\sf{y(1 + xy + x^{2}y^{2})dx + x(1 - xy + x^{2}y^{2})dy = 0} \\ \\ \end{gathered}

Answers

Answered by IamIronMan0
4

Answer:

 \orange{xy -  \frac{1}{xy}  +  ln( \frac{x}{y} )  = c}

Step-by-step explanation:

Arrange given equation as following

(ydx + xdy) + ( {x}^{2}  {y}^{3}dx   \\ +  {x}^{3}  {y}^{2} dy) +  (x {y}^{2} dx -  {x}^{2} ydy) = 0 \\  \\

Now we will try to make this exact differential . Notice first terms (ydx + xdy ) looks like d(xy) so it can be d(xy) or some power multiply of xy with it .

Noticing all three terms we can make some guesses .

Here is what will work

divide whole equation by x^2.y^2

 \frac{(ydx + xdy) }{ {x}^{2} {y}^{2} } + \\   \frac{ ( {x}^{2}  {y}^{3}dx    +  {x}^{3}  {y}^{2} dy) } { {x}^{2}  {y}^{2} }+  \\  \frac{ (x {y}^{2} dx -  {x}^{2} ydy) }{ {x}^{2}  {y}^{2}} = 0 \\  \\  \\  \\ d( \frac{ - 1}{ xy} ) + (ydx + xdy) +  \frac{ydx - xdy}{xy}  = 0 \\ \\   \\ d( -  \frac{1}{xy} ) + d(xy) +  \frac{dx}{x}  -  \frac{dy}{y}  = 0 \\  \\   \int \: d( -  \frac{1}{xy} ) + \int d(xy) + \int  \frac{dx}{x}  -   \int\frac{dy}{y}  = 0 \\  \\  \frac{ - 1}{xy}  + xy +  ln(x)  -  ln(y)  = c \\  \\ xy -  \frac{1}{xy}  +  ln( \frac{x}{y} )  = c

Similar questions