Question~
![\bold {If A, B \: and \: C \: are \: interior \: angles \: of \: a \: triangle \: ABC \: then \: show \: that \: \sin (\frac{B +C }{2} ) = \cos \: \frac{A}{2} } \bold {If A, B \: and \: C \: are \: interior \: angles \: of \: a \: triangle \: ABC \: then \: show \: that \: \sin (\frac{B +C }{2} ) = \cos \: \frac{A}{2} }](https://tex.z-dn.net/?f=+%5Cbold+%7BIf+A%2C+B++%5C%3A+and++%5C%3A+C++%5C%3A+are++%5C%3A+interior++%5C%3A+angles+%5C%3A++of++%5C%3A+a++%5C%3A+triangle++%5C%3A+ABC+%5C%3A++then++%5C%3A+show+%5C%3A++that+%5C%3A++%5Csin+%28%5Cfrac%7BB+%2BC+%7D%7B2%7D+%29+%3D++%5Ccos+%5C%3A++%5Cfrac%7BA%7D%7B2%7D+%7D)
Don't spam!!
Answers
Answered by
2
Step-by-step explanation:
Since A+B+C=180 for interior angles of triangle ABC. then B+C=180-A.
Answered by
3
♡Answer♡:-
Given △ABC
We know that sum of three angles of a triangle is 180
Hence ∠A+∠B+∠C=180°
or A+B+C=180°
B+C=180° −A
Multiply both sides by 1/2
1/2 (B+C)= 1/2 (180° −A)
1)2 (B+C)=90° − A/2 ...(1)
Now 1/2 (B+C)
Taking sine of this angle
sin( B+C/2) [B+C/2 =90° − A/2 ]
sin(90° − A/2 )
cos A/2 [sin(90°−θ)=cosθ]
Hence sin( B+C/2 )=cos A/2
proved
Itzgirl45 ❤️
Similar questions