Math, asked by jaswasri2006, 1 day ago


Question :
 \color{springgreen}\displaystyle{\rm \int_{0} ^{  \infty }  \frac{ {x}^{2020} }{ {2020}^{x} }  \: dx}

Only for :

✪ Moderators
✪ Maths Aryabhattas
✪ Other Best Users
 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
Warnings :

❖ No spamming
❖ No unwanted answers ​

Answers

Answered by kvalli8519
3

Refer the given attachment

Attachments:
Answered by sajan6491
6

 \green{ \boxed{ \boxed{  \begin{matrix}\displaystyle \rm \red{ \int_{0}^{ \infty } \frac{ {x}^{2020} }{ {2020}^{x} } \: dx }  \\ \\  \displaystyle \rm \red{ \int_{0}^{ \infty } \frac{ {x}^{m} }{ {m}^{x} } \: dx } \\  \\ \displaystyle \rm \red{ \int_{0}^{ \infty } { {x}^{m} }{ {m}^{ - x} } \: dx } \\ \\  \displaystyle \rm \red{ \int_{0}^{ \infty } { {x}^{m} }{ {e}^{ - x \ln(m) } } \: dx } \\  \\ \displaystyle \rm \red{ \int_{0}^{ \infty } \bigg( \frac{ {x}^{} }{ { ln(m) }^{} } \bigg)^{m} {e}^{ - t} \frac{1}{ ln(m) } dt } \\ \\  \displaystyle \rm \red{ \int_{0}^{ \infty } \frac{ {x}^{m} }{ { (ln (m) )}^{m + 1} } \: {e}^{ - t} \: dt } \\  \\ \displaystyle \rm \red{ \frac{ 1^{} }{ { (ln (m) )}^{m + 1} } \int_{0}^{ \infty } {t}^{m} {e}^{ - t} \: dt } \\  \\ \displaystyle \rm \red{ \frac{ 1^{} }{ { (ln (m) )}^{m + 1} } m !} \\  \\ \displaystyle \rm \red{ \frac{ {2020!} }{( ln(2020)) {}^{2021} } } \end{matrix}}}}

Similar questions