Question :
Answer with a proper explanation :)
#Quality answer will be appreciated!
Answers
Answered by
139
⠀
⠀
⠀
⠀
⠀
⠀
⠀
ItzArchimedes:
Nice !
Answered by
119
EXPLANATION.
∫[cos2x - cos2α/cos x - cos α]dx.
As we know that,
⇒ cos2∅ = 2cos²∅ - 1.
put cos2x = cos2α = 2cos²∅ - 1.
⇒ ∫[(2cos²x - 1) - (2cos²α - 1)/cos x - cosα]dx.
⇒ ∫[2cos²x - 2cos²α - 1 + 1/cos x - cosα]dx.
⇒ ∫[2cos²x - 2cos²α/cos x - cosα]dx.
⇒ ∫[2 ( cos²x - cos²α)/cos x - cosα]dx.
⇒ ∫[2 ( cos x - cosα)(cos x + cosα)/(cos x - cosα)]dx.
⇒ ∫[2(cos x + cosα)dx.
⇒ 2[(∫cos x)dx + ∫(cosα)dx].
⇒ 2sinx + 2xcosα + c.
MORE INFORMATION.
(1) = Integration of a function.
⇒ ∫f(x)dx = Ф(x) + c ⇔ d/dx [Ф(x)] = f(x).
(2) = Basic Theorem on integration.
(1) = ∫Kf(x)dx = K∫f(x)dx + c.
(2) = ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx + c.
(3) = d/dx [∫f(x)dx] = f(x).
(4) = ∫[d/dx f(x)]dx = f(x).
Similar questions