Math, asked by Anonymous, 5 months ago

Question :

\displaystyle \int \sf\dfrac{cos2x - cos2\alpha}{cosx - cos\alpha}dx

Answer with a proper explanation :)

#Quality answer will be appreciated!

Answers

Answered by Anonymous
139

\;\qquad\quad\;\;\large{\odot\;\;\underline{\underline{\bf{\purple{Given\; Question}}}}}

\displaystyle \int \sf\dfrac{cos2x - cos2\alpha}{cosx - cos\alpha}dx

\;\qquad\quad\;\;\large{\odot\;\;\underline{\underline{\bf{\blue{Required\; Solution}}}}}

\displaystyle \sf \bold{2(sin \: x \:  + x \: cos \alpha ) + c}

\;\qquad\quad\;\;\large{\odot\;\;\underline{\underline{\bf{\green{Step \; By \; Step\; Solution}}}}}

\displaystyle  \begin{gathered}\\\;\;\sf{:\rightarrow\;\int \sf\dfrac{cos2x - cos2\alpha}{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;\int \sf\dfrac{(2cos^{2} x -1) - (2 cos ^{2} \alpha - 1)}{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;\int \sf\dfrac{2cos^{2} x  - 1 - 2 cos ^{2} \alpha  + 1}{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;\int \sf\dfrac{2cos^{2} x   - 2 cos ^{2} \alpha  + 1 - 1}{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;\int \sf\dfrac{2(cos^{2} x   - 2 cos ^{2} \alpha ) }{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;2\int \sf\dfrac{cos^{2} x   - 2 cos ^{2} \alpha  }{cosx - cos\alpha}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;2\int \sf\dfrac{(cos x   - cos  \alpha) (cos x    + cos  \alpha) }{(cosx - cos\alpha)}dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;2\int \sf{(cos x    + cos  \alpha) }dx}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;2(\int \sf{cos x   \: dx  +  \int cos  \alpha }dx)}\end{gathered}

\displaystyle  \begin{gathered}\\\;\;\sf{:\longrightarrow\;2(\int \sf{cos x   \: dx  +  cos  \alpha \int1. \:  }dx)}\end{gathered}

\displaystyle \Longrightarrow\sf \bold{2(sin \: x \:  + x \: cos \alpha ) + c}


ItzArchimedes: Nice !
BrainlyIAS: (Awesome)^2 ♥☺
amansharma264: Awesome
Answered by amansharma264
119

EXPLANATION.

∫[cos2x - cos2α/cos x - cos α]dx.

As we know that,

⇒ cos2∅ = 2cos²∅ - 1.

put cos2x = cos2α = 2cos²∅ - 1.

⇒ ∫[(2cos²x - 1) - (2cos²α - 1)/cos x - cosα]dx.

⇒ ∫[2cos²x - 2cos²α - 1 + 1/cos x - cosα]dx.

⇒ ∫[2cos²x - 2cos²α/cos x - cosα]dx.

⇒ ∫[2 ( cos²x - cos²α)/cos x - cosα]dx.

⇒ ∫[2 ( cos x - cosα)(cos x + cosα)/(cos x - cosα)]dx.

⇒ ∫[2(cos x + cosα)dx.

⇒ 2[(∫cos x)dx + ∫(cosα)dx].

⇒ 2sinx + 2xcosα + c.

                                                                   

MORE INFORMATION.

(1) = Integration of a function.

⇒ ∫f(x)dx = Ф(x) + c ⇔ d/dx [Ф(x)] = f(x).

(2) = Basic Theorem on integration.

(1) = ∫Kf(x)dx = K∫f(x)dx + c.

(2) = ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx + c.

(3) = d/dx [∫f(x)dx] = f(x).

(4) = ∫[d/dx f(x)]dx = f(x).


ItzArchimedes: Awesome !!
amansharma264: Thanku
BrainlyIAS: Great ! ♥
amansharma264: Thanku
Similar questions
Math, 2 months ago