Math, asked by runimahtajina, 3 months ago

Question:-

find \:  \:  \int \frac{ ({x}^{4 } - x )  ^{ \frac{1}{4} } }  { {x}^{5} }  \: dx

Answers

Answered by Anonymous
7

Question:

find \:  \:  \int \frac{ ({x}^{4 } - x )  ^{ \frac{1}{4} } }  { {x}^{5} }  \: dx

Solution:

 we \: have \: \int \frac{ ({x}^{4 } - x )  ^{ \frac{1}{4} } }  { {x}^{5} }  \: dx  =  \int \frac{(1 - \frac{1}{ {x}^{3} } )^{ \frac{1}{4} }  }{ {x}^{4} }  = dx \\  \\ put \:  \: 1 -  \frac{1}{ {x}^{3} }  = 1 -  {x}^{ - 3}  = t, \: so \:  \: that \:  \:  \frac{3}{ {x}^{4} }   \: dx = dt \\  \\  therefore \:  \int \frac{ ({x}^{4}  - x)^{ \frac{1}{4} } } { {x}^{5} }  \: dx =  \frac{1}{3}  \int {t}^{ \frac{1}{4} }  \: dt =  \frac{1}{3}  \times  \frac{4}{5} t ^{ \frac{5}{4} }  + c =  \frac{4}{5} (1 -  \frac{1}{ {x}^{3} } )^{ \frac{5}{4} }  + c

Similar questions