Question :-
Note :- spam answer get deleted so please dont spam!
Answers
We're asked to evaluate,
Taking
Put,
Also,
Then (1) becomes,
Performing integration by parts,
Adding (1) and (2) we get,
Undoing substitutions for and
Taking
Answer:
We're asked to evaluate,
\displaystyle\longrightarrow I=\int\sqrt{x^2+2x+5}\ dx⟶I=∫
x
2
+2x+5
dx
Taking 5=1+4,5=1+4,
\displaystyle\longrightarrow I=\int\sqrt{x^2+2x+1+4}\ dx⟶I=∫
x
2
+2x+1+4
dx
\displaystyle\longrightarrow I=\int\sqrt{(x+1)^2+2^2}\ dx⟶I=∫
(x+1)
2
+2
2
dx
\displaystyle\longrightarrow I=\int\sqrt{2^2\left[\dfrac{(x+1)^2}{2^2}+1\right]}\ dx⟶I=∫
2
2
[
2
2
(x+1)
2
+1]
dx
\displaystyle\longrightarrow I=2\int\sqrt{\left(\dfrac{x+1}{2}\right)^2+1\right]}\ dx\quad\quad\dots(1)
Put,
\longrightarrow\dfrac{x+1}{2}=\tan\theta⟶
2
x+1
=tanθ
\longrightarrow x=2\tan\theta-1⟶x=2tanθ−1
\longrightarrow dx=2\sec^2\theta\ d\theta⟶dx=2sec
2
θ dθ
Also,
\longrightarrow\sec\theta=\sqrt{\tan^2\theta+1}⟶secθ=
tan
2
θ+1
\longrightarrow\sec\theta=\sqrt{\left(\dfrac{x+1}{2}\right)^2+1}⟶secθ=
(
2
x+1
)
2
+1
\longrightarrow\sec\theta=\dfrac{1}{2}\sqrt{x^2+2x+5}⟶secθ=
2
1
x
2
+2x+5
Then (1) becomes,
\displaystyle\longrightarrow I=4\int\sqrt{\tan^2\theta+1\right]}\ \sec^2\theta\ d\theta
\displaystyle\longrightarrow I=4\int\sec^3\theta\ d\theta\quad\quad\dots(1)⟶I=4∫sec
3
θ dθ…(1)
\displaystyle\longrightarrow I=4\int\sec\theta\ \sec^2\theta\ d\theta⟶I=4∫secθ sec
2
θ dθ
Performing integration by parts,
\displaystyle\longrightarrow I=4\left[\sec\theta\tan\theta-\int \sec\theta\tan^2\theta\ d\theta\right]⟶I=4[secθtanθ−∫secθtan
2
θ dθ]
\displaystyle\longrightarrow I=4\sec\theta\tan\theta-4\int \sec\theta(\sec^2\theta-1)\ d\theta⟶I=4secθtanθ−4∫secθ(sec
2
θ−1) dθ
\displaystyle\longrightarrow I=4\sec\theta\tan\theta-4\int(\sec^3\theta-\sec\theta)\ d\theta⟶I=4secθtanθ−4∫(sec
3
θ−secθ) dθ
\displaystyle\longrightarrow I=4\sec\theta\tan\theta-4\int\sec^3\theta\ d\theta+4\int\sec\theta\ d\theta\quad\quad\dots(2)⟶I=4secθtanθ−4∫sec
3
θ dθ+4∫secθ dθ…(2)
Adding (1) and (2) we get,
\displaystyle\longrightarrow 2I=4\sec\theta\tan\theta+4\int\sec\theta\ d\theta⟶2I=4secθtanθ+4∫secθ dθ
\displaystyle\longrightarrow I=2\sec\theta\tan\theta+2\log|\sec\theta+\tan\theta|+C'⟶I=2secθtanθ+2log∣secθ+tanθ∣+C
′
Undoing substitutions for \sec\thetasecθ and \tan\theta,tanθ,
\displaystyle\longrightarrow I=\dfrac{1}{2}(x+1)\sqrt{x^2+2x+5}+2\log\left|\dfrac{x+1+\sqrt{x^2+2x+5}}{2}\right|+C'⟶I=
2
1
(x+1)
x
2
+2x+5
+2log
∣
∣
∣
∣
∣
∣
2
x+1+
x
2
+2x+5
∣
∣
∣
∣
∣
∣
+C
′
Taking C'-2\log2=C,C
′
−2log2=C,
\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{2}(x+1)\sqrt{x^2+2x+5}+2\log\left|x+1+\sqrt{x^2+2x+5}\right|+C}}⟶
I=
2
1
(x+1)
x
2
+2x+5
+2log
∣
∣
∣
∣
x+1+
x
2
+2x+5
∣
∣
∣
∣
+C
Step-by-step explanation:
pls mark brainliest