Math, asked by Anonymous, 1 year ago

Question:

 \frac{sin(A - B)}{cosAcosB}  +  \frac{sin(B- C)}{cosBcos C}  +  \frac{sin(C - A)}{cosC - cosA}  = 0

Answers

Answered by Anonymous
12

See the attachment I think it will help you^_^

✴ Here we use ,

✴Sin ( A-B)=Sin A Cos B -CosA SinB


similarly,

✴Sin ( B-C)=Sin B Cos C-CosB SinC

✴Sin(C-A) = Sin C Cos A -Cos C Sin A



THANKS ❤^_^


#RÔYÂL CHÔRÎ ♥

Attachments:
Answered by Avengers00
7
<b>
\large\red{Question:}

 \frac{sin(A - B)}{cos\: A. cos\: B} + \frac{sin(B- C)}{cos\: B. cos\: C} + \frac{sin(C - A)}{cos\: C. cos\: A} = 0

\huge\red{Answer:}

\underline{LHS=}

=  \frac{ Sin\:A.Cos\: B - Cos\: A.Sin\: B}{Cos\: A. Cos\: B} + \frac{Sin\:B.Cos\: C - Cos\: B.Sin\: C}{Cos\: B. Cos\: C} + \frac{Sin\:C.Cos\: A - Cos\: C.Sin\: A}{Cos\: C.Cos\: A}

Using the Identity,
sin(A - B) = Sin A Cos B - Cos A Sin B

=  \frac{ Sin\:A.Cos\: B}{Cos\: A. cos\: B}-\frac{Cos\: A.Sin\: B}{Cos\: A. Cos\: B}+ \frac{Sin\:B.Cos\: C}{Cos\: B. Cos\: C} -\frac{Cos\: B.Sin\: C}{Cos\: B. Cos\: C} + \frac{Sin\:C.Cos\: A}{Cos\: C. Cos\: A} -\frac{Cos\: C.Sin\: A}{Cos\: C. Cos\: A}

=  \frac{ Sin\:A}{cos\: A}-\frac{Sin\: B}{cos\: B}+ \frac{Sin\:B}{cos\: B} -\frac{Sin\: C}{Cos\: C} + \frac{Sin\:C}{cos\: C} -\frac{Sin\: A}{Cos\: A}

= tan\: A - tan\: B + tan\: B - tan\: C + tan\: C - tan\ : A

= 0

\underline{=RHS}

✓✓✓

\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Keep\: it\: Mello}}}

Similar questions