Math, asked by Manish67892, 11 months ago

Question.
If  \: sec  \:  \theta \:  +  \: tan \theta = p, show  \: that
 \frac{p {}^{2}  - 1}{p {}^{2}  + 1} \: cosec  \: \theta = 1.

Answers

Answered by shruti11111111111
4

Step-by-step explanation:

LHS

(p² - 1) / (p² + 1)

{(secѲ + tanѲ)² - 1 } / {(secѲ + tanѲ)² + 1 } × cosecѲ

{sec²Ѳ + tan²Ѳ + 2secѲtanѲ - 1} / {sec²Ѳ + tan²Ѳ + 2secѲtanѲ + 1} × cosecѲ

{(sec²Ѳ - 1) + tan²Ѳ + 2secѲtanѲ} / {(tan²Ѳ + 1) + sec²Ѳ + 2secѲtanѲ} × cosecѲ

{tan²Ѳ + tan²Ѳ + 2secѲtanѲ} / {sec²Ѳ + sec²Ѳ + 2secѲtanѲ} × cosecѲ

{2tan²Ѳ + 2secѲtanѲ} / {2sec²Ѳ + 2secѲtanѲ} × cosecѲ

{2tanѲ (tanѲ + secѲ)} / {2secѲ (tanѲ + secѲ)} × cosecѲ

Now 2 and (tanѲ + secѲ) cancel out

So we have

tanѲ / secѲ × cosecѲ

sinѲ × cosecѲ

1

Therefore LHS = RHS

Answered by Anonymous
95

 \huge{\boxed{\underline{\underline{\bf{\red{ \:Your \: Question:- \: }}}}}}

 \rm \: If \: sec  \: \theta +  \tan \:  \theta = p,

 \rm \: Show \: that

 \rm  \:  \:  \:  \:  \: \frac{p {}^{2}  - 1}{p {}^{2}  + 1} \: cosec \:  \theta = 1. \\

 \huge   {\red{\boxed{ \overline{ \underline{ \mid\mathfrak{\blue{SO}}{\mathrm{\green{LU}}{ \sf{\pink{TI}}}{\mathtt{\purple{ON}}        \:  \gray{\colon - }{\mid}}}}}}}}

 \huge \bf \red{G} \blue{I} \pink{V} \purple{E} \orange{N},

 \rm \:  \:  \:  \:  \:  \:  \:sec \:  \theta + tan \theta = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...( \sf \red{1})

 \bf \: We \: know \: that,

 \rm \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  sec {}^{2}  \:  \theta -  \tan {}^{2}  \:   \theta = 1

 \implies \:  \:  \:  \:  \:  \:  \rm \: (sec \:  \theta +  tan \: \theta)(sec \:  \theta - tan \:  \theta) = 1

 \implies  \:  \:  \:  \:  \rm \: p(sec \:  \theta - tan \:  \theta) = 1 \:  \:  \:  \:  \:  \:  \:  (by \: ( \bf \red{1}))

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \rm \: sec \: \theta - tan \:  \theta =  \frac{1}{p} \:  \:  \:  \:  \:  \:  \:  \: ...( \bf \red{2 })

 \rm \: By \: Adding \: ( \bf \red{1}) \rm \: and \: ( \bf \red{2}) \:

 \rm \: Then, \: we \: get,

 \rm \:  \:  \: 2 \: sec \:  \theta  = \: p +  \frac{1}{p} =  \frac{p {}^{2}  + 1}{p} \\

 \therefore \:  \:  \:  \rm \:  \:  \:  \:  \:  \: sec \:  \theta \:  =  \frac{p {}^{2}  + 1}{2p} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: cos \:  \theta =  \frac{2p}{p {}^{2}  + 1}  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  ...( \bf \red{3}) \\

 \rm \: Eqn. \: ( \bf \red{1}) -  \rm \: Eqn. \: ( \bf \red{2}) \rm \: gives

  \:  \:  \:  \:  \:  \:  \: \rm2 \: tan \:  \theta \:  = p -  \frac{1}{p} =  \frac{p {}^{2}  - 1}{p} \\

 \therefore \:  \:  \:  \:  \:  \rm \: tan \:  \theta =  \frac{p {}^{2}  - 1}{2p}  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \: ...( \bf \red{4}) \\

 \rm \: Multiplying \: ( \bf \red{3}) \rm \: and \: ( \bf \red{4})

 \rm \: We \: have,

 \rm \: cos \:  \theta. \: tan \: \theta =  \frac{2p}{p {}^{2}  + 1}. \frac{p {}^{2}  - 1}{2p} =  \frac{p {}^{2}  - 1}{p {}^{2}  + 1} \\

 \implies \:  \:  \:  \:  \:  \:  \rm \: cos \:  \theta. \frac{sin \:  \theta}{cos \:  \theta} =   \frac{p  {}^{2}  - 1}{p {}^{2}  + 1} \\

 \implies \:  \:  \:  \:  \:  \rm sin \ \theta =  \frac{p {}^{2} - 1 }{p {}^{2}  + 1} \\

 \implies \:  \:  \:  \:  \rm \frac{1}{cosec \:  \theta} =  \frac{p {}^{2} - 1}{p {}^{2}   + 1} \\

 \rm \:By  \: Cross  - multiplying \:

  \:  \:  \:  \: \rm(p {}^{2}  - 1) \: cosec \:  \theta = p {}^{2}  + 1

 \implies \:  \:  \:  \:  \:  \frac{p {}^{2}  - 1}{p {}^{2}  + 1} \: cosec \:  \theta = 1 \\


Anonymous: Good
Brainly100: Great and Explained Answer
Similar questions