Physics, asked by MisterIncredible, 6 months ago

Question :

\mathsf{ If  \: equivalent \:  resistances \:  of \:  R_1  \: and \:  R_2 \:  in  \: series }
\sf{  \: and  \: parallel  \: be  \: r_1  \: and  \: r_2 \:  respectively, \:  then}
\sf{ \:  \dfrac{R_1}{R_2} \:  equals  }

Options :

 \sf{(a) \:  \dfrac{r_1}{r_2}  \qquad \qquad (b) \dfrac{r_1r_2}{r_1 +r_2 }}
\sf{(c) \dfrac{r_1 +  \sqrt{ {r_1}^{2}  - 4r_1r_2 } }{r_1 + \sqrt{{r_1}^2+4r_1r_2}}  \qquad \qquad (d) \dfrac{ r_1 + \sqrt{{r_1}^2-4r_1r_2 }}{r_1 - \sqrt{{x_1}^{2} -4r_1r_2}}}

Answer with proper explanation !

Be Brainly ^_^​

Answers

Answered by Arceus02
47

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

\sf{\\}

\underline{\underline{\textbf{ \red{In series}:- }}}

\sf{ {R}_{eq} = R_1 + R_2}

\longrightarrow \sf{ r_1 = R_1 + R_2 \dots (i) }

\sf{\\}

\underline{\underline{\textbf{ \red{In parallel}:- }}}

\sf{ \dfrac{1}{{R}_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} }

\longrightarrow \sf{ \dfrac{1}{{R}_{eq}} = \dfrac{R_1 + R_2}{R_1  R_2}}

\longrightarrow \sf{ r_2 = \dfrac{R_1 R_2}{R_1 + R_2}}

\longrightarrow \sf{r_2 = \dfrac{R_1 R_2}{r_1} \quad [From\:(i)]}

\longrightarrow \sf{ R_1 R_2 = r_1 r_2 \dots (ii)}

\sf{\\}

Now,

\sf{ {(R_1 + R_2)}^{2} = {R}_{1}^{2} + {R}_{2}^{2} + 2R_1 R_2}

\longrightarrow \sf{ {r}_{1}^{2} = {R}_{1}^{2} + {R}_{2}^{2} + 2r_1r_2 \quad[From\:(i)\:and\:(ii)] }

 \longrightarrow \sf{ {R}_{1}^{2} + {R}_{2}^{2} = {r}_{1}^{2} - 2r_1 r_2\dots(iii)}

\sf{\\}

\sf{ {(R_1 - R_2)}^{2} = {R}_{1}^{2} + {R}_{2}^{2} - 2R_1 R_2}

\longrightarrow \sf{  {(R_1 - R_2)}^{2} = {r}_{1}^{2} - 2r_1r_2 - 2r_1 r_2\quad[From(i) and (iii)}

 \longrightarrow \sf{  {(R_1 - R_2)}^{2} = {r}_{1}^{2} - 4r_1 r_2}

Considering only positive values,

\longrightarrow \sf{ R_1 - R_2 = \sqrt{ {r}_{1}^{2} - 4r_1 r_2 } \dots (iv)}

\sf{\\}

\underline{\underline{\textbf{ \red{ (i) + (iv)}:- }}}

\sf{ R_1 + R_2 + R_1 - R_2 = r_1 + \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }}

\sf{R_1 =\dfrac{1}{2}(r_1 + \sqrt{ {r}_{1}^{2} - 4r_1 r_2 })}

\sf{\\}

\underline{\underline{\textbf{ \red{ (i) - (iv)}:- }}}

\longrightarrow \sf{R_1 + R_2 - R_1 + R_2 = r_1 - \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }}

\longrightarrow \sf{R_2 = \dfrac{1}{2}(r_1 - \sqrt{ {r}_{1}^{2} - 4r_1 r_2 })}

\sf{\\}

So,

\sf{\dfrac{R_1}{R_2} = \dfrac{\dfrac{1}{2}(r_1 + \sqrt{ {r}_{1}^{2} - 4r_1 r_2 })}{\dfrac{1}{2}(r_1 - \sqrt{ {r}_{1}^{2} - 4r_1 r_2 })}}

\longrightarrow \sf{\dfrac{R_1}{R_2} = \dfrac{r_1 + \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }}{r_1 - \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }}}

\sf{\\}

Hence, the answer is,

\longrightarrow \underline{\underline{\sf{ \green{D)\:\dfrac{R_1}{R_2} = \dfrac{r_1 + \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }}{r_1 - \sqrt{ {r}_{1}^{2} - 4r_1 r_2 }} }}}}


MisterIncredible: Brilliant ! Thanks for your help ...
Answered by shadowsabers03
74

According to the question,

\sf{\longrightarrow r_2=\dfrac{R_1R_2}{R_1+R_2}}

Multiply both sides by 4.

\sf{\longrightarrow 4r_2=\dfrac{4R_1R_2}{R_1+R_2}}

We know that,

  • \sf{(a+b)^2-(a-b)^2=4ab}

Therefore, on taking \sf{a=R_1} and \sf{b=R_2,}

\sf{\longrightarrow 4r_2=\dfrac{(R_1+R_2)^2-(R_1-R_2)^2}{R_1+R_2}}

Dividing both sides by \sf{R_1+R_2,}

\sf{\longrightarrow\dfrac{4r_2}{R_1+R_2}=\dfrac{(R_1+R_2)^2-(R_1-R_2)^2}{(R_1+R_2)^2}}

\sf{\longrightarrow\dfrac{4r_2}{R_1+R_2}=1-\left(\dfrac{R_1-R_2}{R_1+R_2}\right)^2}

But according to the question,

\sf{\longrightarrow r_1=R_1+R_2}

Thus,

\sf{\longrightarrow\dfrac{4r_2}{r_1}=1-\left(\dfrac{R_1-R_2}{R_1+R_2}\right)^2}

\sf{\longrightarrow\left(\dfrac{R_1-R_2}{R_1+R_2}\right)^2=1-\dfrac{4r_2}{r_1}}

\sf{\longrightarrow\dfrac{R_1-R_2}{R_1+R_2}=\dfrac{\sqrt{r_1-4r_2}}{\sqrt{r_1}}}

Rationalising the RHS, by multiplying both numerator and denominator with \sf{\sqrt{r_1},}

\sf{\longrightarrow\dfrac{R_1-R_2}{R_1+R_2}=\dfrac{\sqrt{r_1\,\!^2-4r_1r_2}}{r_1}}

Finally, by rule of componendo and dividendo,

\sf{\longrightarrow\underline{\underline{\dfrac{R_1}{R_2}=\dfrac{r_1+\sqrt{r_1\,\!^2-4r_1r_2}}{r_1-\sqrt{r_1\,\!^2-4r_1r_2}}}}}

Hence (D) is the answer.


MisterIncredible: Awesome as always ...
Similar questions