Math, asked by Anonymous, 4 months ago

Question:-

 \rm \: find \:  \int_{0}^{2}  ( {x}^{2}  + 1)dx \: as \: the \: limit \: of \: a \: sum
Note :- Solve by using limit of a sum method ​

Answers

Answered by Anonymous
82

Answer

To find integral using limit of sum method :-

\displaystyle\boxed{\sf \int_{a}^{b} f( {x})dx  = (b - a)\lim_{n \to \infty}( \frac{1}{n} )[f(a) + f(a + n) + f(a + \{n - 1\}h)]}

where \sf h = \frac{b-a}{n}

For given question :-

  • \rm a = 0
  • \rm b = 2
  • \rm f(x) = ( x^2 + 1 )
  • \rm h = \frac{2}{n}

\displaystyle\sf \int_{0}^{2} ( {x}^{2} + 1)dx = 2 \lim_{n \to \infty}( \frac{1}{n} )[f(0) + f(\frac{2}{n}) + f(\frac{4}{n}) + ...... + f(\frac{2 \{{n - 1} \}}{n} )]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[1 + \{ \frac{2^2}{n^2} + 1\} + \{ \frac{4^2}{n^2} + 1 \} + ..... + \{ \frac{(2n-2)^2}{n^2} + 1 \}]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )([ 1 + 1 + 1 ....... 1(n - times) ] +  \frac{1}{n^2} )[2^2 + 4^2 +... (2n-2)^2]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[ n + \frac{2^2}{n^2}(1^2 + 2^2 ..... + (n-1)^2]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[ n+\frac{4}{n^2}\{(n-1)n(\frac{2n-1}{6}\}]

\displaystyle\sf =2 \lim_{n \to \infty}( \frac{1}{n} )[n + \frac{2}{3} \{\frac{(n-1)(2n-1)}{n} \}]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[n+\frac{2}{3}(1-\frac{1}{n} )(2-\frac{1}{n})]

  • \sf n \to \infty , \frac{1}{n} \to 0

\displaystyle\sf \int_{0}^{2} ( {x}^{2} + 1)dx = 2 (1+ \frac{4}{3})

\displaystyle\boxed{\sf\red{ \int_{0}^{2} ( {x}^{2} + 1)dx = \frac{14}{3}}}

Answered by vanshikavikal448
2

 \bold \color{red}  \star \underbrace \green{hence..the \: right \: answer \: is \:  \frac{14}{3} } \star

☺️✌️

Attachments:
Similar questions