Math, asked by Anonymous, 4 days ago

Question:-

 {\rm{ii)}}{\bigg(\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\  \end{bmatrix}  \bigg) \: \times   \: \bigg(\begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\  \end{bmatrix}  \bigg)}

don't spam​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given multiplication of matrices as

\rm :\longmapsto\:{\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\ \end{bmatrix} \: \times \: \begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\ \end{bmatrix} }

\rm \:  =  \: \begin{bmatrix} 	0 + 0 + 20 & 0 + 2 + 0& 0 + 1 + 10\\ 	0 + 0 + 4& 0 + 0 + 0& 0 + 0 + 2\\ 0 + 0 + 4& 0 + 6 + 0& 0 + 3 + 2 \\ \end{bmatrix}

\rm \:  =  \: \begin{bmatrix} 	20 & 2& 11\\ 	4& 0 & 2\\ 	4& 6& 5 \\ \end{bmatrix}

Hence,

\boxed{\tt{ \rm \: {\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\ \end{bmatrix} \: \times \:\begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\ \end{bmatrix}} =  \: \begin{bmatrix} 	20 & 2& 11\\ 	4& 0 & 2\\ 	4& 6& 5 \\ \end{bmatrix}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

1. Matrix multiplication is defined when number of columns of pre multiplier is equal to the rows of post multiplier.

2. Matrix multiplication is Commutative. i.e AB = BA

3. Matrix multiplication is Associative. i.e (AB)C = A(BC)

4. Matrix multiplication is Distributive. i.e. A(B + C) = AB + AC

5. There exist an identity matrix I such that AI = IA = A

Answered by XxitzZBrainlyStarxX
9

Question:-

{\rm{}}{\bigg(\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\ \end{bmatrix} \bigg) \: \times \: \bigg(\begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\ \end{bmatrix} \bigg)}

Given:-

{\rm{}}{\bigg(\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\ \end{bmatrix} \bigg) \: \times \: \bigg(\begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\ \end{bmatrix} \bigg)}

To Find:-

  • Need to solve the Given Matrixes.

Solution:-

  \longmapsto{\rm{}}{\begin{bmatrix} 	0 & 1& 5\\ 	0& 0 & 1\\ 	9 & 3& 1 \\ \end{bmatrix}  \: \times \: \begin{bmatrix} 	6 & 1& 5\\ 	0& 2 & 1\\ 	4& 0& 2 \\ \end{bmatrix} }

Multiplication of the Given Matrixes.

\begin{gathered}\rm \:  =  \: \begin{bmatrix} 0 \times 6 + 1 \times 0 + 5 \times 4&& 1 \times0 + 1 \times 2 + 5 \times 0 && 0 \times 5 + 1 \times 1 + 5 \times 2\\ 0 \times 6 + 0 \times 0 + 1 \times 4&& 0  \times 1 + 0 + 0&& 0 + 0 + 2\\ 0 + 0 + 4&& 0 + 6 + 0&& 0 + 3 + 2 \\ \end{bmatrix}\end{gathered} 

[tex] = \left[

\begin{array}{c c c} \sf

20& \sf 2 & \sf11 \\

\sf 4 & \sf0& \sf 2\\

\sf4 & \sf 6 & \sf5

\end{array}

\right] [/tex]

Answer:-

[tex] \red{ \boxed{{\rm{}}{\begin{bmatrix} 0 & 1& 5\\ 0& 0 & 1\\ 9 & 3& 1 \\ \end{bmatrix} \: \times \: \begin{bmatrix} 6 & 1& 5\\ 0& 2 & 1\\ 4& 0& 2 \\ \end{bmatrix} }= \left[

\begin{array}{c c c} \sf

20& \sf 2 & \sf11 \\

\sf 4 & \sf0& \sf 2\\

\sf4 & \sf 6 & \sf5

\end{array}

\right]}}[/tex]

Hope you have satisfied.

Similar questions