Question:-
don't spam
Answers
Given multiplication of matrices as
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
MORE TO KNOW
1. Matrix multiplication is defined when number of columns of pre multiplier is equal to the rows of post multiplier.
2. Matrix multiplication is Commutative. i.e AB = BA
3. Matrix multiplication is Associative. i.e (AB)C = A(BC)
4. Matrix multiplication is Distributive. i.e. A(B + C) = AB + AC
5. There exist an identity matrix I such that AI = IA = A
Question:-
Given:-
To Find:-
- Need to solve the Given Matrixes.
Solution:-
Multiplication of the Given Matrixes.
[tex] = \left[
\begin{array}{c c c} \sf
20& \sf 2 & \sf11 \\
\sf 4 & \sf0& \sf 2\\
\sf4 & \sf 6 & \sf5
\end{array}
\right] [/tex]
Answer:-
[tex] \red{ \boxed{{\rm{}}{\begin{bmatrix} 0 & 1& 5\\ 0& 0 & 1\\ 9 & 3& 1 \\ \end{bmatrix} \: \times \: \begin{bmatrix} 6 & 1& 5\\ 0& 2 & 1\\ 4& 0& 2 \\ \end{bmatrix} }= \left[
\begin{array}{c c c} \sf
20& \sf 2 & \sf11 \\
\sf 4 & \sf0& \sf 2\\
\sf4 & \sf 6 & \sf5
\end{array}
\right]}}[/tex]
Hope you have satisfied. ⚘