Math, asked by Anonymous, 6 months ago


Question
 \rm \implies \: for \:  {x}^{2}  \not = \: n\pi + 1,n \in  N \: , \: the \: intergral
 \implies \rm \int  x \sqrt{ \frac{2 \sin( {x}^{2}  - 1) -  \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2}  - 1) +  \sin2( {x}^{2}  - 1)} } dx \:  \\

is equal to

 \rm \: a) \dfrac{1}{2}  log_{e} | \sec( {x}^{2} - 1 ) |  + c
 \rm b) log_{e}   \bigg| \sec \bigg(  \dfrac{ {x}^{2} - 1 }{2} \bigg ) \bigg |   + c
 \rm \: c) log_{e}  \bigg| \dfrac{1}{2} \sec( {x}^{2}  - 1)  \bigg|  + c
 \rm d) \dfrac{1}{2}  log_{e} \bigg | \sec ^{2}  \bigg( \dfrac{ {x}^{2} - 1 }{2} \bigg ) \bigg |  + c

(2019 Main, 9Jan I )

Answers

Answered by BrainlyIAS
12

Question :

\bullet\ \; \displaystyle \sf \red{ \int x\ \sqrt{\dfrac{2\ sin(x^2-1)-sin2(x^2-1)}{2\ sin(x^2-1)+sin2(x^2-1)}}\ dx }

For x² ≠ nπ + 1 , n ∈ N

\sf a)\ \dfrac{1}{2} \log _e |sec(x^2-1)|+c

\sf b)\ \log _e \Bigg| sec^2\bigg( \dfrac{x^2-1}{2}\bigg) \Bigg| +c

\sf c)\ \log _e \Bigg| \dfrac{1}{2}\ sec(x^2-1) \Bigg| +c

\sf d)\ \dfrac{1}{2} \log _e \Bigg| sec^2 \bigg( \dfrac{x^2-1}{2}\bigg) \Bigg|+c

Solution :

\\ \displaystyle \sf \int x\ \sqrt{\dfrac{2\ sin(x^2-1)-sin2(x^2-1)}{2\ sin(x^2-1)+sin2(x^2-1)}}\ dx \\

\bullet\ \; \sf \pink{sin2 \theta =2 sin\ \theta cos\ \theta}

\\ \to \displaystyle \sf  \int x\ \sqrt{\dfrac{2\ sin(x^2-1)-2\ sin(x^2-1)\ cos(x^2-1)}{2\ sin(x^2-1)+2\ sin(x^2-1)\ cos(x^2-1)}}\ dx \\

\\ \to \displaystyle \sf \int x\ \sqrt{\dfrac{2\ sin(x^2-1) \big[1-cos(x^2-1) \big]}{2\ sin(x^2-1) \big[ 1+cos(x^2-1) \big]}}\ dx\\

\\ \to \displaystyle \sf \int x\ \sqrt{\dfrac{1-cos(x^2-1)}{1+cos(x^2-1)}}\ dx \\

\bullet\ \; \sf \pink{1-cos2 \theta =2sin^2 \theta}

\implies \sf \pink{1-cos\ \theta =2sin^2 \dfrac{\theta}{2}}

\bullet\ \; \sf \pink{1+cos2\ \theta =2cos^2 \theta}

\implies \sf \pink{1+cos\ \theta =2cos^2 \dfrac{\theta}{2}}

\\ \to \displaystyle \sf \int x\ \sqrt{\dfrac{2\ sin^2\big( \frac{x^2-1}{2}\big)}{2\ cos^2 \big( \frac{x^2-1}{2}\big)}}\ dx \\

\\ \to \displaystyle \sf \int x\ \sqrt{\dfrac{ sin^2\big( \frac{x^2-1}{2}\big)}{ cos^2 \big( \frac{x^2-1}{2}\big)}}\ dx \\

\\ \to \displaystyle \sf \int x\ \sqrt{tan^2\bigg( \frac{x^2-1}{2}\bigg)}\ dx \\

\\ \to \displaystyle \sf \int x\ tan \bigg( \frac{x^2-1}{2}\bigg)\ dx \\

★ ════════════════════ ★

Let's use substitution ,

\mapsto\ \sf \pink{u=\dfrac{x^2-1}{2}}

\mapsto \sf \pink{du=\dfrac{2x}{2}\ dx}

\mapsto \sf \pink{du=x\ dx}

★ ════════════════════ ★

\\ \to \displaystyle \sf \int tan\ u\ du \\

\to \sf \log_e (sec\ u)+c

\\  \displaystyle  \sf \green{ \leadsto \log_e \Bigg| sec \bigg( \dfrac{x^2-1}{2}\bigg) \Bigg|+c} \\

Option (b)


Anonymous: Nice answer Bro
Asterinn: Perfect!
BrainlyIAS: Thanks to both of you ❤ ♥ :-)
amansharma264: Great
BrainlyIAS: Thanks bro ♥ :-)
Answered by mathdude500
4

\large\underline\blue{\bold{Formula \:  used:-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:(1). \: sin2x = 2sinx \: cosx

\bf \:(2). \: 1 - cosx =  {2sin}^{2} \dfrac{x}{2}

\bf \:(3). \: 1 + cosx =  {2cos}^{2} \dfrac{x}{2}

\bf \:(4). \: \dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1}

\bf \:(5). \:  \int \: tanx =  log_e|secx|  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:Let \: S = \rm \int x \sqrt{ \dfrac{2 \sin( {x}^{2} - 1) - \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2} - 1) + \sin2( {x}^{2} - 1)} } dx \: \sf \:  ⟼(1)

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Let us consider

\bf \:\dfrac{2 \sin( {x}^{2} - 1) - \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2} - 1) + \sin2( {x}^{2} - 1)}\sf \:  ⟼ \: (2)

\sf \:  Let \:  {x}^{2}  - 1 = t

☆ So, equation (2) can be rewritten as

\sf \:  \dfrac{2 \sin( {x}^{2} - 1) - \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2} - 1) + \sin2( {x}^{2} - 1)} =  \dfrac{2sint - sin2t}{2sint + sin2t}

\sf \:   = \dfrac{2sint - 2sintcost}{2sint + 2sintcost}

\sf \:   = \dfrac{2sint(1 - cost)}{2sint(1 + cost)}

\sf \:   = \dfrac{ \cancel{2sint} \: (1 - cost)}{ \cancel{2sint} \: (1 + cost)}

\sf \:   = \dfrac{ {2sin}^{2}\dfrac{t}{2}  }{2 {cos}^{2} \dfrac{t}{2} }

\sf \:   = \dfrac{ { \cancel2 \: sin}^{2}\dfrac{t}{2}  }{ \cancel2  \: {cos}^{2} \dfrac{t}{2} }

\sf \:   =  {tan}^{2} \dfrac{t}{2} \sf \: 

\sf \:   =  {tan}^{2}  \bigg(\dfrac{ {x}^{2} - 1 }{2} \bigg)

\bf\implies \:\dfrac{2 \sin( {x}^{2} - 1) - \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2} - 1) + \sin2( {x}^{2} - 1)} =  {tan}^{2}  \bigg(\dfrac{ {x}^{2} - 1 }{2} \bigg)

☆ So, now equation (1) can be rewritten as

\bf \:S = \rm \int x \sqrt{ \dfrac{2 \sin( {x}^{2} - 1) - \sin2( {x}^{2} - 1) }{2 \sin( {x}^{2} - 1) + \sin2( {x}^{2} - 1)} } dx

 \bf \:S   =  \int \: x \sqrt{ {tan}^{2}  \bigg(\dfrac{ {x}^{2} - 1 }{2} \bigg)} dx

\sf \: S  =  \int \: x  \: {tan} \bigg(\dfrac{ {x}^{2} - 1 }{2} \bigg)dx\sf \:  ⟼(4)

\sf \:  Put \:  {x}^{2}  - 1 = y\sf \:  ⟼ \: (5)

☆ Differentiate w. r. t. x both sides, we get

\sf \:  \dfrac{d}{dx} ( {x}^{2}  - 1) = \dfrac{dy}{dx}

\sf \:  ⟼2x = \dfrac{dy}{dx}

\sf \:  ⟼x \: dx = \dfrac{1}{2} dy\sf \:  ⟼(6)

☆ On substituting equation (5) and (6) in equation (4), we get

\sf \:  S =  \int \: (tan \dfrac{y}{2})  \: \dfrac{dy}{2}

\sf \:  S =  \dfrac{1}{2} \int \: (tan \dfrac{y}{2})  \: dy

\bf\implies \:S = \dfrac{1}{2}  \dfrac{log_e |sec \frac{y}{2} | }{\dfrac{1}{2} }  + c

\bf\implies \:S =  log_e |sec\dfrac{1}{2}( {x}^{2}  - 1) |  + c

\bf\implies \:S  = log_{e} \bigg| \sec \bigg( \dfrac{ {x}^{2} - 1 }{2} \bigg ) \bigg | + c

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option  \: (b) \:  is  \: correct}}}}

Similar questions