Math, asked by Anonymous, 5 months ago

Question
\rm \to y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x } ,\: Find\: \bigg(\dfrac{dy}{dx}\bigg)\:\: at\:\:x =-1

NOTE
ANSWER is 2/π

Answers

Answered by tarracharan
14

\large{\bold{Gɪᴠᴇɴ :}}

\:

\rm \:\:●\:y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x }

\:

\large{\bold{Tᴏ \:Fɪɴᴅ :}}

\:

\rm \:\:●\:Find\: \bigg(\dfrac{dy}{dx}\bigg)\:\: at\:\:x =-1

\:

\large{\bold{Sᴏʟᴜᴛɪᴏɴ :}}

\:

\rm y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x }

\:

We know that,

\sf{tan^{-1}x+cot^{-1}x = \dfrac{\pi}{2} \:\:∀x}

\:

\rm y = \dfrac{tan^{-1}x-cot^{-1}x }{\dfrac{\pi}{2}}

\rm y = \dfrac{2}{\pi} (tan^{-1}x-cot^{-1}x)

\:

By appling derivative,

\:

\rm \dfrac{dy}{dx} = \dfrac{2}{\pi} .\dfrac{d}{dx} (tan^{-1}x-cot^{-1}x)

\rm \dfrac{dy}{dx} = \dfrac{2}{\pi}\left[ \dfrac{d}{dx} tan^{-1}x-\dfrac{d}{dx} cot^{-1}x\right]

\rm \dfrac{dy}{dx} = \dfrac{2}{\pi}\left[ \dfrac{1}{1+x^2} -\left(-\dfrac{1}{1+x^2}\right)\right]

\rm \dfrac{dy}{dx} = \dfrac{2}{\pi}. \dfrac{2}{1+x^2}

\:

Given, x = -1

\:

\rm \dfrac{dy}{dx} = \dfrac{4}{\pi(1+(-1)^2)}

\rm \dfrac{dy}{dx} = \dfrac{\cancel{4}}{\cancel{2}\pi } = \rm{\red{ \dfrac{2}{\pi}}}

Answered by mathdude500
1

Given Question :-

\rm \to y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x } ,\: Find\: \bigg(\dfrac{dy}{dx}\bigg)\:\: at\:\:x =-1

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{ y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x } } \\ &\sf{and \: x \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{\dfrac{dy}{dx} \: at \: x \:  =  \:  -  \: 1}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used - }}}}  \end{gathered}

 (1). \: \boxed{ \bf \:  {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2}}

 (2). \: \boxed{ \bf \: \dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} }  }

\large\underline{\bold{Solution - }}

Given that

\rm :\longmapsto\: y = \dfrac{tan^{-1}x-cot^{-1}x }{tan^{-1}x+cot^{-1}x }

\rm :\longmapsto\: y = \dfrac{tan^{-1}x- \bigg(\dfrac{\pi}{2}  - tan^{-1}x  \bigg)}{\dfrac{\pi}{2}  }

\rm :\longmapsto\:y = \dfrac{2}{\pi}  \bigg(2 {tan}^{ - 1}x - \dfrac{\pi}{2} \bigg)

\rm :\longmapsto\:y \:  =  \: \dfrac{4}{\pi}  {tan}^{ - 1} x - 1

  • Now, Differentiate w. r. t. x, we get

\rm :\implies\:\dfrac{dy}{dx} = \dfrac{4}{\pi} \dfrac{d}{dx} {tan}^{ - 1}x

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{4}{\pi}  \times \dfrac{1}{1 +  {x}^{2} }

\rm :\implies\:\dfrac{dy}{dx} = \dfrac{4}{\pi \: (1 +  {x}^{2}) }

  • Now, put x = - 1, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{4}{\pi \: (1 + 1)}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{4}{2\pi \: }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ \: 2 \: }{ \: \pi \:}

Additional Information :-

 (1). \: \boxed{ \bf \: \dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{1 +  {x}^{2} }  }

 (2). \: \boxed{ \bf \: \dfrac{d}{dx} {cot}^{ - 1}x = -   \: \dfrac{1}{1 +  {x}^{2} }  }

 (3). \: \boxed{ \bf \: \dfrac{d}{dx} {sin}^{ - 1}x = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  }

 (4). \: \boxed{ \bf \: \dfrac{d}{dx} {cos}^{ - 1}x = \dfrac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } }  }

 (5). \: \boxed{ \bf \: \dfrac{d}{dx} {sec}^{ - 1}x = \dfrac{1}{ x\sqrt{{x}^{2} - 1 } }  }

 (6). \: \boxed{ \bf \: \dfrac{d}{dx} {cosec}^{ - 1}x = \dfrac{ -  \: 1}{ x\sqrt{{x}^{2} - 1 } }  }

Similar questions