Math, asked by ItzRainDoll, 9 hours ago

Question:-

 \sf \: If \: \sqrt[3]{1906624} \times \sqrt{x} = 3100, find \: x.

•No spam.​

Answers

Answered by Anonymous
18

Answer:

Given :-

\mapsto \sf \sqrt[3]{1906624} \times \sqrt{x} =\: 3100

To Find :-

\mapsto \sf What\: is\: the\: value\: of\: x\: .

Solution :-

\implies \bf \sqrt[3]{1906624} \times \sqrt{x} =\: 3100

\implies \sf \sqrt[3]{\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{31 \times 31 \times 31}} \times \sqrt{x} =\: 3100

\implies \sf \sqrt[3]{2^3 \times 2^3 \times 31^3} \times \sqrt{x} =\: 3100

\implies \sf 2 \times 2 \times 31 \times \sqrt{x} =\: 3100

\implies \sf 4 \times 31 \times \sqrt{x} =\: 3100

\implies \sf 124 \times \sqrt{x} =\: 3100

\implies \sf \sqrt{x} =\: \dfrac{\cancel{3100}}{\cancel{124}}

\implies \sf \sqrt{x} =\: \dfrac{25}{1}

\implies \sf \sqrt{x} =\: 25

By squaring both sides we get,

\implies \sf (\sqrt{x})^2 =\: (25)^2

\implies \sf x =\: 25 \times 25

\implies \sf\bold{\red{x =\: 625}}

{\small{\bold{\underline{\therefore\: The\: value\: of\: x\: is\: 625\: .}}}}

Answered by shivasinghmohan629
2

Answer:

.

Step-by-step explanation:

The value of x is equal to 625.

Step-by-step explanation:

We have,

1906624 × √√x = 3100

To find, the value of x = ?

1906624 × √x = 3100

124 × 124 × 124 × √√x = 3100

124 × √√x = 3100

√x 3100 124

= 25

Squaring both sides, we get

√x² = 25²

⇒ x = 25 x 25 = 625

Thus, the value of x is equal to 625.

Similar questions