Math, asked by kamalhajare543, 11 hours ago

Question:-
 \sf \: To \: \:prove \\ \\ \sf \: : \implies \sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A} = \dfrac{2}{2sin^2A - 1}\\ \\ \\
No Spam ​

Answers

Answered by ItzzTwinklingStar
94

complete Question:

Prove:

\sf \: : \implies \sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A} = \dfrac{2}{2sin^2A - 1} =  \frac{2}{1 - 2 \: cos {}^{2}A } \\ \\

Given:

\sf \: : \implies \sf \dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A} = \dfrac{2}{2sin^2A - 1} =  \frac{2}{1 - 2 \: cos {}^{2}A } \\ \\

Solution:

{ \sf{ :  \implies\dfrac{\sin A+\cos A}{\sin A-\cos A}+\dfrac{\sin A-\cos A}{\sin A + \cos A}=\dfrac{2}{\sin^2A-\cos^2A}=\dfrac{2}{2\sin^2A-1}=\dfrac{2}{1-\cos^2A}. }}

using trigonometric identities :

 \\ { \underline{ \boxed{ \bf{ \pink{\sin^2\theta+\cos^2\theta=1}}}}}\\ \\

{ \underline{ \boxed{ \bf{ \red{\sin^2\theta=1-\cos^2\theta}}}}}\\ \\

{ \underline{ \boxed{ \bf{ \green{cos^2\theta=1-\sin^2\theta.}}}}}\\ \\

We have,

 \sf:\implies\dfrac{\sin A+\cos A}{\sin A-\cos A}+\dfrac{\sin A-\cos A}{\sin A+\cos A}\\\\

 \sf:\implies \dfrac{(\sin A+\cos A)^2+(\sin A-\cos A)^2}{(\sin A-\cos A)(\sin A+\cos A)}\\\\

 \sf:\implies \dfrac{(\sin A)^2-\sin A\cos A+(\cos A)^2+(\sin A)^2+\sin A\cos A+(\cos A)^2}{(\sin A)^2-(\cos A)^2}\\\\

 \sf:\implies \dfrac{2(\sin^2A+\cos^2A)}{\sin^2A-\cos^2A}\\\\

\sf:\implies\dfrac{2\times1}{\sin^2A-\cos^2A}\\\\

\sf:\implies\dfrac{2}{\sin^2A-\cos^2A}\\\\

\sf:\implies\dfrac{2}{\sin^2A-(1-\sin^2A)}\\\\

{\bf { :\implies{\dfrac{2}{2\sin^2A-1 } = \dfrac{2}{2(1-\cos^2A)-1}=\dfrac{2}{1-2\cos^2A}}}} \\  \\

Hence proved.

Answered by llDianall
33

To prove :-

\sf\dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA} = \dfrac{2}{sin^2A - cos^2A} = \dfrac{2}{2sin^2A - 1}

Here as a first step we'll divide the whole equation into 3 parts which we have to prove .

On taking Last part first i.e ,

\dfrac{2}{2sin^2A - 1}\\

Now , we know the identity i.e ,

 \leadsto \sf \cos {}^{2}A  +  \sin {}^{2}A  = 1 \\  \leadsto \sf \: sin {}^{2} A = 1 -  \cos {}^{2} A \:  \: (1)

Now , in denominator we have 2sin²A - 1 which can be written from the eq (1) as

 \bf \frac{2}{2(1 -  \cos {}^{2}A) - 1 }  =  \frac{2}{2 - 2 \cos {}^{2}A - 1  }  =  \frac{2}{1 - 2 \cos {}^{2} A }

So , In Third part we got ,

 </strong><strong>\sf \</strong><strong>frac{2}{1 - 2 \cos {}^{2} A }

Now , Take the second part which is as follow :

 \frac{2}{sin^2A - cos^2A} =    \sf\frac{2}{1 -  \cos {}^{2} A -  \cos {}^{2} A }   \\   = \frac{2}{1 - 2 \cos {}^{2} A}

So , we have made our second part equal to the third part .

Now , take the first part I.e ,

\dfrac{sinA + cosA}{sinA - cosA} + \dfrac{sinA - cosA}{sinA + cosA}

After taking decimal and solving we get

 \frac{2( \sin {}^{2} A +  \cos {}^{2}A )}{ \sin {}^{2}A -   \cos {}^{2}A   }

By the square identity, we get

 \frac{2}{ \sin {}^{2} A -  \cos {}^{2}  A }

Now , solve this in the same manner as we did in second part and there we get our answer

 \dfrac{2}{1 - 2  \cos {}^{2}A  }

So , here we proved all parts or sides equal to the above equation.

Thankyou

Similar questions