Math, asked by ItzDazzledBoi, 6 months ago

Question:-


The 17th term of an A.P. is 14 more than its 10th term. Find the common difference.​

Answers

Answered by Anonymous
20

Given:-

  • 17th term of an AP is 14 more than 10th term.

⠀⠀⠀

To Find:-

  • common difference?

⠀⠀⠀

Solution:-

\underline{\bigstar\:\boldsymbol{According\:to\:the\: Question\::}}\\

:\implies\sf a_{17} = a_{10} + 14\\

⠀⠀⠀

:\implies\sf a + (17-1) d = a + (10-1)d +14\\

⠀⠀⠀

:\implies\sf a+ 16d = (a + 9d) + 14\\

⠀⠀⠀

:\implies\sf a+ 16d - (a+9d) = 14\\

⠀⠀⠀

:\implies\sf a+ 16d - a - 9d = 14\\

⠀⠀⠀

:\implies\sf 7d = 14\\

⠀⠀⠀

:\implies\sf d = \cancel{ \dfrac{14}{7}}\\

⠀⠀⠀

:\implies{\boxed{\sf{\purple{d = 2}}}}\;\bigstar\\

⠀⠀⠀

\therefore\;{\underline{\sf{Hence,\;Common\; difference\;of\;an\;AP\:is\; \bf{2}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by SweetCharm
12

Given:-

  • 17th term of an AP is 14 more than 10th term.

⠀⠀⠀

To Find:-

  • common difference

⠀⠀⠀

Solution:-

\begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\: Question\::}}\\\end{gathered}

\begin{gathered}:\mapsto\sf a_{17} = a_{10} + 14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf a + (17-1) d = a + (10-1)d +14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf a+ 16d = (a + 9d) + 14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf a+ 16d - (a+9d) = 14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf a+ 16d - a - 9d = 14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf 7d = 14\\\end{gathered}

⠀⠀⠀

\begin{gathered}:\mapsto\sf d = \cancel{ \dfrac{14}{7}}\\\end{gathered}

\begin{gathered}:\mapsto{\boxed{\sf{\pink{d = 2}}}}\;\bigstar\\\end{gathered}

\therefore\;{\underline{\sf{Hence,\;Common\; difference\;of\;an\;AP\:is\; \bf{2}.}}}

⠀⠀▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions