Math, asked by anshi60, 10 months ago

Question ✌️

the function f(x)
 =  \tan {}^{ - 1} ( \sin(x)  + \cos(x)  )
is an increasing function in interval ?

Answers

Answered by Anonymous
124

Given :

Function :

 f(x)= \tan {}^{ - 1} ( \sin(x) + \cos(x) )

To find :

Increasing interval of given function .

Solution :

\bf\:f(x)=\tan {}^{- 1} (\sin(x) + \cos(x) )

Differentiate it with respect to x

 \sf f'(x) =  \dfrac{1}{1 + ( \sin x +  \cos x) {}^{2} }  \times ( \cos x -  \sin x)

 =  \sf \dfrac{ \sqrt{2} ( \frac{1}{ \sqrt{2} }  \cos x -  \frac{1}{ \sqrt{2} } \sin x) }{1 +( \sin x +  \cos x) {}^{2}  }

  =  \sf \dfrac{ \sqrt{2} ( \cos \frac{\pi}{4}   \cos x -  \sin x \sin \frac{\pi}{4} )}{1 + ( \sin x +  \cos x) {}^{2} }

 =  \sf \dfrac{ \sqrt{2}  \times \cos(x +  \frac{\pi}{4} )}{1 + ( \sin x +  \cos x) {}^{2} }

If f'(x) >0 then f(x) is increasing function .

Hence ,f(x) is increasing , if

 \frac{ - \pi}{2 }  < x +  \frac{\pi}{4}  <  \frac{\pi}{2}

 \implies \frac{ - 3\pi}{4}  < x <  \frac{\pi}{4}

Therefore , increasing interval of given function is [\dfrac{-\pi}{2},\dfrac{-\pi}{4}]

Answered by Anonymous
3

Answer:

is this anisha ?????....

Step-by-step explanation:

the phenomenal

Similar questions