Math, asked by BrainlyTerracota, 1 month ago

Question :

the numerator of a fraction is 7 less than it's denominator. If 4 is subtracted from the numerator and the denominator is increased by 1, the resulting fraction equals 1/3. Find the original fraction.​

Answers

Answered by SparklingBoy
239

 \large \dag Question :-

The numerator of a fraction is 7 less than it's denominator. If 4 is subtracted from the numerator and the denominator is increased by 1, the resulting fraction equals 1/3. Find the original fraction.

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{The   \: Original \:  Fraction  \: is \:  \frac{10}{17} }} }\\

 \large \dag Step by step Explanation :-

Let Numerator and Denominator of Original Fraction be :

  • Numerator = x

As Per the question numerator of the fraction is 7 less than it's denominator so,

  • Denominator should be = x + 7

So ,

\text{Original Fraction = } \frac{\text x}{\text x + 7}  \\ \\

When 4 is subtracted from the numerator and the denominator is increased by 1 :

\\ \rm \text{Fraction Becomes } :  \frac{x -4}{x + 8}  \\  \\

According To Question :

 \\ \large \blue \bigstar  \:   \red{ \bf  \frac{x -4}{x + 8} =  \frac{1}{3}  } \\ \\

:\longmapsto \rm 3(x  -  4) = 1(x + 8) \\  \\

:\longmapsto \rm 3x  -  12 = x + 8 \\  \\

:\longmapsto \rm 3x  -  x = 8 + 12 \\  \\

:\longmapsto \rm 2x = 20 \\  \\

:\longmapsto \rm x =  \cancel \frac{20}{2}  \\  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf x = 10} }}}\\\\

\blue\dashrightarrow\underline{\underline{\sf  \orange{Numerator  \: of \:  Original  \: Fraction = 10 }} }\\

As numerator of the fraction is 7 less than it's denominator

\rm\therefore \:  Denominator  = 10   + 7\\

\blue\dashrightarrow\underline{\underline{\sf  \orange{Denominator  \: of \:  Original  \: Fraction = 17}} }\\

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{ Original  \: Fraction  =  \dfrac{10}{17} }}}}}

Answered by BrainlyPhenominaL
201

Given : The numerator of a fraction is 7 less than it's denominator. If 4 is subtracted from the numerator and the denominator is increased by 1, the resulting fraction equals 1/3. Find the original fraction.

Need to Find : The original fraction

__________________________________

Cᴏɴᴄᴇᴘᴛ :

According to the question, here we are given that the Numerator is less than the denominator. Now, 4 is subtracted from the numerator and 1 is added to the denominator. The new fraction becomes ⅓.

Sᴏʟᴜᴛɪᴏɴ :

  \rm {Let \:  us  \: assume  \: the \:  numerator \:  be \:  \frak{a}}

\quad\quad \frak{Original  \:Fraction = \frac{Numerator}{Denominator}}

\quad\quad \frak{ Original \:  Fraction = \blue{ \frac{a}{a + 7}}}

 \rm{Now,  \: 4 \: is \: subtracted \: from \: the \: numerator \: and \: 1 \: is \: added \: to \: the \: denominator}

\quad\quad \small{ \frak{Original \:  Fraction =  \frac{a - 4}{a + 7 + 1} }} \\  \\  \small\quad \quad\frak{Original \:  Fraction =  \frac{a - 4}{a + 8} }

 \rm{New  \: Fraction \: becomes \:  \frak{ \frac{1}{3} }}

 \underline{\rm{\orange{Equation}}}: \\  \\  \hookrightarrow \small \frak{ \frac{a - 4}{a + 8}  =  \frac{1}{3} }  \\  \\ \hookrightarrow \small \frak{ 3(a - 4) = 1(a + 8) } \\  \\ \hookrightarrow \small \frak{ 3a - 12 = a + 8 } \\  \\ \hookrightarrow \small \frak{ 3a - a = 8 + 12 } \\  \\ \hookrightarrow \small \frak{ 2a = 20 } \\  \\ \hookrightarrow \small \frak{ a =  \cancel \frac{20}{2}} \\  \\ \star \quad \underline{ \boxed{ \small  \green{\frak{ a = 10 }}}}

 \rm{Now,  \: finding \:  original  \: fraction}

\quad \quad\frak{Original  \: Fraction = \frac{a}{a + 7}} \\  \\ \quad\quad\frak{Original  \: Fraction = \frac{10}{10 + 7}} \\  \\   \qquad\star\quad \underline{\frak{Original  \: Fraction = \frac{10}{17}}}

 \small{ \mathbb{ \red{HENCE  \: THE  \: ORIGINAL \:  FRACTION \:   \: IS } }} \:  \:    \underline{\boxed{  \pink{\frak{ \frac{10}{17} }}}}

Similar questions