Math, asked by llBurlyRosell, 2 days ago

▶Question:-

The population of a city was 20,000 in the year 1997. It increased at the rate of 5% p.a. Find the population at the end of the year 2000.

↣ don't spam! ✖​

Answers

Answered by ay16052010
5

Step-by-step explanation:

We have,

p=20,000

R=5%

T=3 year,

A=20,000(1+5/100)'3

=20,000×( 105/100)'3

=23,52.5

Hence this is the answer.

Answered by AиgєℓíᴄAυяσяα
60

 \sf \: Given  : -

Population of city in 1997 = 20, 000

It Increases at the Rate of 5% Per Annum

Here, 5% is compounded Rate

 \sf \: Formula \:  used:-

 \sf \: A = P     \bigg \lgroup\frac{ 1 + R}{100 }  \bigg\rgroup^ n \\

Here,

A = Population at end of 2000

P = Population in 1997 = 20, 000

R=5%

N = 2000 - 1997

= 3

Putting Values in Formula ,

 \sf \: Population \:  at  \: end  \: of \:  2000  \:  \\  \sf = 20000    \bigg \lgroup\frac{1 + 5}{100 \:} \bigg \rgroup ^ 3 \\ \\   \sf \: =  20000\bigg \lgroup1 + \frac{1}{20 \:} \bigg \rgroup ^ 3 \\  \\  \sf \:  = 20000\bigg \lgroup\frac{20 + 1}{20} \bigg \rgroup ^ 3 \\  \\  \sf \:  = 20000\bigg \lgroup\frac{21}{20 \:} \bigg \rgroup ^ 3 \\  \\  \sf \:  = 20000 \times  \frac{21 \times 21 \times 21}{20 \times 20 \times 20}  \\ \\   \sf \:  =  \frac{5 \times 21 \times 21 \times 21}{2}  \\  \\  \sf \:  =  \frac{441 \times 21 \times 5}{2}  \\  \\  \sf \:  =  \frac{441 \times 105}{2}  \\  \\  \sf \:  =  \frac{46305}{2}  \\  \\  \sf \: =23152.5 \\   \\ \sf \: Since \:  population \:  cannot  \: be \:  in \:  decimals   \\ \sf\therefore Estimated  \: population= 23, 153

Similar questions