Math, asked by kamalhajare543, 9 days ago

Question

Two sides of a triangle are given find the angle between them such that the area of the triangle is maximum.

Do not spam
(Answer only if u know :) ​​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

The two sides of a triangle ABC be represented as a and b

and

Let x be the angle included between the two sides a and b.

Then area of triangle ABC is given by

\rm :\longmapsto\:Area_{\triangle ABC}, \: A \:  = \dfrac{1}{2}ab \: sinx

[ For, proof of the above result, see the attachment ]

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} A \:  = \dfrac{d}{dx}\dfrac{1}{2}ab \: sinx

\rm :\longmapsto\:\dfrac{dA}{dx}  \:  = \dfrac{1}{2}ab \:\dfrac{d}{dx} sinx

\rm :\longmapsto\:\dfrac{dA}{dx}  \:  = \dfrac{1}{2}ab \:cosx -  -  - (1)

\red{\bigg \{ \because \: \dfrac{d}{dx}sinx = cosx\bigg \}}

For maxima or minima,

\rm :\longmapsto\:\dfrac{dA}{dx}  \:  =0

\rm :\longmapsto\:\dfrac{1}{2}ab \: cosx \:  =  \: 0

\rm :\longmapsto\: \: cosx \:  =  \: 0

\bf\implies \:x = \dfrac{\pi}{2}

Now, from equation (1), we have

\rm :\longmapsto\:\dfrac{dA}{dx}  \:  = \dfrac{1}{2}ab \:cosx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{dA}{dx}  \:  = \dfrac{d}{dx}\dfrac{1}{2}ab \:cosx

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{d {x}^{2} }  \:  = \dfrac{1}{2}ab \dfrac{d}{dx}\:cosx

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{d {x}^{2} }  \:  =  -  \: \dfrac{1}{2}ab \: sinx

\red{\bigg \{ \because \: \dfrac{d}{dx}cosx =  -  \: sinx\bigg \}}

Now,

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{d {x}^{2} }_{at \: x \:  = \dfrac{\pi}{2}}   \:  =  -  \: \dfrac{1}{2}ab \: sin\dfrac{\pi}{2}

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{d {x}^{2} }_{at \: x \:  = \dfrac{\pi}{2}}   \:  =  -  \: \dfrac{1}{2}ab  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \: sin\dfrac{\pi}{2}  = 1 \}

\rm :\longmapsto\:\dfrac{ {d}^{2} A}{d {x}^{2} }_{at \: x \:  = \dfrac{\pi}{2}}   \:   < 0

\bf :\longmapsto\:Area_{\triangle ABC} \: is \: maximum \: when\: x \:  = \dfrac{\pi}{2}

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

Attachments:
Similar questions