Math, asked by Anonymous, 7 months ago

Question:Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)



Answers

Answered by Anonymous
1

Step-by-step explanation:

\red{\bold{\underline{\underline{Question᎓}}}}

Q:-Use suitable identities to find the following products : (I) (X+8) (X - 10) (II) (X+4) (X+10)

\huge\tt\underline\blue{Answer </p><p> }

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

════════════XXX═════════════

solving (I)

⟹(x + 8)(x - 10)

Here this identify is used:-

⟹(x + a)(x - b) =  {x}^{2}  + (a + b)x + ab

⟹(x + 8)(x - 10) =  {x}^{2}  + (8 + ( - 10))x +  - 8 \times 10

⟹ {x}^{2}  - 2x  - 80 = 0

solving (ii)

⟹(x + 4)(x + 10)

⟹(x + 4) (x - 10) =  {x}^{2}  + (4 + ( - 10))x + 4 \times  - 10

⟹ {x}^{2}  - 6x - 40 = 0

════════════XXX═════════════

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Answered by Anonymous
1

→ Solving (I)

 \tt{⟹(x + 8)(x - 10)}

→ Here this identify is used:-

 \tt{⟹(x + a)(x - b) = {x}^{2} + (a + b)x + ab}

 \tt{⟹(x+a)(x−b)= {x}^{2} }

 \tt{⟹{x}^{2} + (8) + ( - 10)x + - 8 \times 10}

 \tt{⟹(x+8)(x−10)= {x}^{2}}

 \tt{⟹ {x}^{2} - 2x - 80 = 0</p><p>⟹x2</p><p>}

 \ \tt{ \pink{→ Solving \:  (ii)}}

 \tt{⟹(x + 4)(x + 10)}

 \tt{⟹{x}^{2} + (4 )+ ( - 10)x + 4 \times - 10}

 \tt{⟹(x+4)(x−10)= {x}^{2} </p><p> }

 \tt{⟹ {x}^{2} - 6x - 40 = 0}

Similar questions